ترغب بنشر مسار تعليمي؟ اضغط هنا

Gyrokinetic stability theory of electron-positron plasmas

378   0   0.0 ( 0 )
 نشر من قبل Per Helander
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The linear gyrokinetic stability properties of magnetically confined electron-positron plasmas are investigated in the parameter regime most likely to be relevant for the first laboratory experiments involving such plasmas, where the density is small enough that collisions can be ignored and the Debye length substantially exceeds the gyroradius. Although the plasma beta is very small, electromagnetic effects are retained, but magnetic compressibility can be neglected. The work of a previous publication (Helander, 2014) is thus extended to include electromagnetic instabilities, which are of importance in closed-field-line configurations, where such instabilities can occur at arbitrarily low pressure. It is found that gyrokinetic instabilities are completely absent if the magnetic field is homogeneous: any instability must involve magnetic curvature or shear. Furthermore, in dipole magnetic fields, the stability threshold for interchange modes with wavelengths exceeding the Debye radius coincides with that in ideal MHD. Above this threshold, the quasilinear particle flux is directed inward if the temperature gradient is sufficiently large, leading to spontaneous peaking of the density profile.



قيم البحث

اقرأ أيضاً

312 - Markus H. Thoma 2009
Ultrarelativistic electron-positron plasmas can be produced in high-intensity laser fields and play a role in various astrophysical situations. Their properties can be calculated using QED at finite temperature. Here we will use perturbative QED at f inite temperature for calculating various important properties, such as the equation of state, dispersion relations of collective plasma modes of photons and electrons, Debye screening, damping rates, mean free paths, collision times, transport coefficients, and particle production rates, of ultrarelativistic electron-positron plasmas. In particular, we will focus on electron-positron plasmas produced with ultra-strong lasers.
A linear gyrokinetic particle-in-cell scheme, which is valid for arbitrary perpendicular wavelength $k_perprho_i$ and includes the parallel dynamic along the field line, is developed to study the local electrostatic drift modes in point and ring dipo le plasmas. We find the most unstable mode in this system can be either electron mode or ion mode. The properties and relations of these modes are studied in detail as a function of $k_perprho_i$, the density gradient $kappa_n$, the temperature gradient $kappa_T$, electron to ion temperature ratio $tau=T_e/T_i$, and mass ratio $m_i/m_e$. For conventional weak gradient parameters, the mode is on ground state (with eigenstate number $l=0$) and especially $k_parallelsim0$ for small $k_perprho_i$. Thus, bounce averaged dispersion relation is also derived for comparison. For strong gradient and large $k_perprho_i$, most interestingly, higher order eigenstate modes with even (e.g., $l=2,4$) or odd (e.g., $l=1$) parity can be most unstable, which is not expected by previous studies. High order eigenstate can also easily be most unstable at weak gradient when $tau>10$. This work can be particularly important to understand the turbulent transport in laboratory and space magnetosphere.
A key uncertainty in the design and development of magnetic confinement fusion energy reactors is predicting edge plasma turbulence. An essential step in overcoming this uncertainty is the validation in accuracy of reduced turbulent transport models. Drift-reduced Braginskii two-fluid theory is one such set of reduced equations that has for decades simulated boundary plasmas in experiment, but significant questions exist regarding its predictive ability. To this end, using a novel physics-informed deep learning framework, we demonstrate the first ever direct quantitative comparisons of turbulent field fluctuations between electrostatic two-fluid theory and electromagnetic gyrokinetic modelling with good overall agreement found in magnetized helical plasmas at low normalized pressure. This framework is readily adaptable to experimental and astrophysical environments, and presents a new technique for the numerical validation and discovery of reduced global plasma turbulence models.
89 - E. L. Shi 2017
The properties of the boundary plasma in a tokamak are now recognized to play a key role in determining the achievable fusion power and the lifetimes of plasma-facing components. Accurate quantitative modeling and improved qualitative understanding o f the boundary plasma ultimately require five-dimensional gyrokinetic turbulence simulations, which have been successful in predicting turbulence and transport in the core. The additional challenges of boundary-plasma simulation necessitate the development of new gyrokinetic codes or major modifications to existing core gyrokinetic codes. In this thesis, we develop the first gyrokinetic continuum code capable of simulating plasma turbulence on open magnetic field lines, which is a key feature of a tokamak scrape-off layer. In contrast to prior attempts at this problem, we use an energy-conserving discontinuous Galerkin discretization in space. To model the interaction between the plasma and the wall, we design conducting-sheath boundary conditions that permit local currents into and out of the wall. We start by designing spatially one-dimensional kinetic models of parallel SOL dynamics and solve these systems using novel continuum algorithms. By generalizing these algorithms to higher dimensions and adding a model for collisions, we present results from the first gyrokinetic continuum simulations of turbulence on two types of open-field-line systems. The first simulation features uniform and straight field lines, such as found in some linear plasma devices. The second simulation is of a hypothetical model we developed of the NSTX scrape-off layer featuring helical field lines. These developments comprise a major step towards a gyrokinetic continuum code for quantitative predictions of turbulence and transport in the boundary plasma of magnetic fusion devices.
Two-fluid Braginskii codes have simulated open-field line turbulence for over a decade, and only recently has it become possible to study these systems with continuum gyrokinetic codes. This work presents a first-of-its-kind comparison between fluid and (long-wavelength) gyrokinetic models in open field-lines, using the GDB and Gkeyll codes to simulate interchange turbulence in the Helimak device at the University of Texas (T. N. Bernard, et. al., Phys. of Plasmas 26, 042301 (2019)). Partial agreement is attained in a number of diagnostic channels when the GDB sources and sheath boundary conditions (BCs) are selected carefully, especially the heat-flux BCs which can drastically alter the temperature. The radial profile of the fluctuation levels is qualitatively similar and quantitatively comparable on the low-field side, although statistics such as moments of the probability density function and the high-frequency spectrum show greater differences. This comparison indicates areas for future improvement in both simulations, such as sheath BCs, as well as improvements in GDB like particle conservation and spatially varying thermal conductivity, in order to achieve better fluid-gyrokinetic agreement and increase fidelity when simulating experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا