ﻻ يوجد ملخص باللغة العربية
We present spectroscopic observations of six high redshift ($z_{rm em}$ $>$ 2) quasars, which have been selected for their Lyman $alpha$ (Ly$alpha$) emission region being only partially covered by a strong proximate ($z_{rm abs}$ $sim$ $z_{rm em}$) coronagraphic damped Ly$alpha$ system (DLA). We detected spatially extended Ly$alpha$ emission envelopes surrounding these six quasars, with projected spatial extent in the range 26 $le$ $d_{rm Lyalpha}$ $le$ 51 kpc. No correlation is found between the quasar ionizing luminosity and the Ly$alpha$ luminosity of their extended envelopes. This could be related to the limited covering factor of the extended gas and/or due to the AGN being obscured in other directions than towards the observer. Indeed, we find a strong correlation between the luminosity of the envelope and its spatial extent, which suggests that the envelopes are probably ionized by the AGN. The metallicity of the coronagraphic DLAs is low and varies in the range $-$1.75 $<$ [Si/H] $<$ $-$0.63. Highly ionized gas is observed to be associated with most of these DLAs, probably indicating ionization by the central AGN. One of these DLAs has the highest AlIII/SiII ratio ever reported for any intervening and/or proximate DLA. Most of these DLAs are redshifted with respect to the quasar, implying that they might represent infalling gas probably accreted onto the quasar host galaxies through filaments.
We study the average Ly$alpha$ emission associated with high-$z$ strong (log $N$(H I) $ge$ 21) damped Ly$alpha$ systems (DLAs). We report Ly$alpha$ luminosities ($L_{rm Lyalpha}$) for the full as well as various sub-samples based on $N$(H I), $z$, $(
We present deep MUSE observations of five quasars within the first Gyr of the Universe ($zgtrsim6$), four of which display extended Ly$alpha$ halos. After PSF-subtraction, we reveal halos surrounding two quasars for the first time, as well as confirm
We present the results of our automatic search for proximate damped Ly$alpha$ absorption (PDLA) systems in the quasar spectra from the Sloan Digital Sky Survey Data Release 12. We constrain our search to those PDLAs lying within 1500 km s$^{-1}$ from
Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. DLA and sub-DLA
The discovery of quasars few hundred megayears after the Big Bang represents a major challenge to our understanding of black holes and galaxy formation and evolution. Their luminosity is produced by extreme gas accretion onto black holes, which alrea