ﻻ يوجد ملخص باللغة العربية
Class I CH$_3$OH masers trace interstellar shocks. They have received little attention mostly as a consequence of their low luminosities; this situation has changed recently and Class I masers are now routinely used as signposts of outflows. The recent detection of polarisation in Class I lines now makes it possible to obtain information on magnetic fields in shocks. We make use of newly calculated collisional rates to investigate the excitation of Class I masers and to reconcile their observed properties with model results. We performed LVG calculations with a plane-parallel slab geometry to compute the pump and loss rates which regulate the interactions of the different maser systems with the maser reservoir. We study the dependence of the pump rate, the loss rate, and the inversion efficiency of the pumping scheme of Class I masers on the physics of the gas. Bright Class I masers are mainly high-temperature high-density structures with maser emission measures corresponding to high CH$_3$OH abundances close to the limits set by collisional quenching. Our model reproduces reasonably well most of the observed properties of Class I masers. The 25 GHz masers are the most sensitive to the density and mase at higher densities than other lines. Moreover, even at high density and high abundance, their luminosity is lower than that of the 44 GHz and 36 GHz lines. By comparison between observed isotropic photon luminosities and our model, we infer beam solid angles of ~0.001 steradian. Class I masers can be separated into 3 families: the $(J+1)_{-1}-J_{0}$-E type, the $(J+1)_0-J_1$-A type, and the $J_2-J_1$-E lines. The 25 GHz lines behave in a different fashion from the other masers as they are only inverted at densities above $10^6$ cm$^{-3}$ in contrast to other Class I masers. Therefore, the detection of maser activity in all 3 families is a clear indication of high densities.
We present a study of the association between class I methanol masers and cold dust clumps from the ATLASGAL survey. It was found that almost 100% of class I methanol masers are associated with objects listed in the ATLASGAL compact source catalog. W
In this paper, we present a database of class I methanol masers. The compiled information from the available literature provides an open and fast access to the data on class I methanol maser emission, including search, analysis and visualization of t
We have used the University of Tasmania Mt Pleasant 26m radio telescope to investigate the polarisation characteristics of a sample of strong 6.7 GHz methanol masers, the first spectral line polarisation observations to be undertaken with this instru
Four Class I maser sources were detected at 44, 84, and 95 GHz toward chemically rich outflows in the regions of low-mass star formation NGC 1333I4A, NGC 1333I2A, HH25, and L1157. One more maser was found at 36 GHz toward a similar outflow, NGC 2023.
We present a simultaneous single-dish survey of 22 GHz water maser and 44 GHz and 95 GHz class I methanol masers toward 77 6.7 GHz class II methanol maser sources, which were selected from the Arecibo methanol maser Galactic plane survey (AMGPS) cata