ﻻ يوجد ملخص باللغة العربية
We present a weak-lensing and dynamical study of the complex cluster Abell 1758 (A1758, z = 0.278) supported by hydrodynamical simulations. This cluster is composed of two main structures, called A1758N and A1758S. The Northern structure is composed of A1758NW & A1758NE, with lensing determined masses of 7.90_{-1.55}^{+1.89} X 10^{14} M_odot and 5.49_{-1.33}^{+1.67} X 10^{14} M_odot, respectively. They show a remarkable feature: while in A1758NW there is a spatial agreement among weak lensing mass distribution, intracluster medium and its brightest cluster galaxy (BCG) in A1758NE the X-ray peak is located 96_{-15}^{+14} arcsec away from the mass peak and BCG positions. Given the detachment between gas and mass we could use the local surface mass density to estimate an upper limit for the dark matter self-interaction cross section: sigma/m<5.83 cm^2 g^{-1}. Combining our velocity data with hydrodynamical simulations we have shown that A1758 NW & NE had their closest approach 0.27 Gyr ago and their merger axis is 21+-12 degrees from the plane of the sky. In the A1758S system we have measured a total mass of 4.96_{-1.19}^{+1.08} X 10^{14} M_odot and, using radial velocity data, we found that the main merger axis is located at 70+-4 degrees from the plane of the sky, therefore closest to the line-of-sight.
We present results from Chandra and XMM-Newton observations of Abell 98 (A98), a galaxy cluster with three major components: a relatively bright subcluster to the north (A98N), a disturbed subcluster to the south (A98S), and a fainter subcluster to t
Weak gravitational lensing of background galaxies provides a direct probe of the projected matter distribution in and around galaxy clusters. Here we present a self-contained pedagogical review of cluster--galaxy weak lensing, covering a range of top
Radio halos and radio relics are diffuse synchrotron sources that extend over Mpc-scales and are found in a number of merger galaxy clusters. They are believed to form as a consequence of the energy that is dissipated by turbulence and shocks in the
We present a detailed strong lensing, weak lensing and X-ray analysis of Abell 2744 (z = 0.308), one of the most actively merging galaxy clusters known. It appears to have unleashed `dark, `ghost, `bullet and `stripped substructures, each ~10^14 sola
The galaxy cluster Abell 1644 ($bar{z}=0.047$) is known for its remarkable spiral-like X-ray emission. It was previously identified as a bimodal system, comprising the subclusters, A1644S and A1644N, each one centered on a giant elliptical galaxy. In