ﻻ يوجد ملخص باللغة العربية
Observations have shown that magnetohydrodynamic waves over a large frequency range are ubiquitous in solar prominences. The waves are probably driven by photospheric motions and may transport energy up to prominences suspended in the corona. Dissipation of wave energy can lead to heating of the cool prominence plasma, so contributing to the local energy balance within the prominence. Here we discuss the role of Alfven wave dissipation as a heating mechanism for the prominence plasma. We consider a slab-like quiescent prominence model with a transverse magnetic field embedded in the solar corona. The prominence medium is modelled as a partially ionized plasma composed of a charged ion-electron single fluid and two separate neutral fluids corresponding to neutral hydrogen and neutral helium. Friction between the three fluids acts as a dissipative mechanism for the waves. The heating caused by externally-driven Alfven waves incident on the prominence slab is analytically explored. We find that the dense prominence slab acts as a resonant cavity for the waves. The fraction of incident wave energy that is channelled into the slab strongly depends upon the wave period, $P$. Using typical prominence conditions, we obtain that wave energy trapping and associated heating are negligible when $P gtrsim 100$ s, so that it is unlikely that those waves have a relevant influence on prominence energetics. When $1$ s $lesssim P lesssim 100$ s the energy absorption into the slab shows several sharp and narrow peaks, that can reach up to 100%, when the incident wave frequency matches a cavity resonance of the slab. Wave heating is enhanced at those resonant frequencies. Conversely, when $P lesssim 1$ s cavity resonances are absent, but the waves are heavily damped by the strong dissipation. We estimate that wave heating may compensate for about 10% of radiative losses of the prominence plasma.
There is observational evidence of the presence of small-amplitude transverse magnetohydrodynamic (MHD) waves with a wide range of frequencies in the threads of solar prominences. It is believed that the waves are driven at the photosphere and propag
We present a new version of the Alfven Wave Solar Model (AWSoM), a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfven wave turbulence. Th
Physical processes which may lead to solar chromospheric heating are analyzed using high-resolution 1.5D non-ideal MHD modelling. We demonstrate that it is possible to heat the chromospheric plasma by direct resistive dissipation of high-frequency Al
A three-dimensional MHD model for the propagation and dissipation of Alfven waves in a coronal loop is developed. The model includes the lower atmospheres at the two ends of the loop. The waves originate on small spatial scales (less than 100 km) ins
Magneto-hydrodynamic (MHD) Alfven waves have been a focus of laboratory plasma physics and astrophysics for over half a century. Their unique nature makes them ideal energy transporters, and while the solar atmosphere provides preferential conditions