ﻻ يوجد ملخص باللغة العربية
We study mass distributions within and beyond 5~effective radii ($R_{rm e}$) in 23 early-type galaxies from the SLUGGS survey, using their globular cluster (GC) kinematic data. The data are obtained with Keck/DEIMOS spectrograph, and consist of line-of-sight velocities for ~$3500$ GCs, measured with a high precision of ~15 $rm km s^{-1}$ per GC and extending out to $~13 R_{rm e}$. We obtain the mass distribution in each galaxy using the tracer mass estimator of Watkins et al. and account for kinematic substructures, rotation of the GC systems and galaxy flattening in our mass estimates. The observed scatter between our mass estimates and results from the literature is less than 0.2 dex. The dark matter fraction within $5R_{rm e}$ ($f_{rm DM}$) increases from ~$0.6$ to ~$0.8$ for low- and high-mass galaxies, respectively, with some intermediate-mass galaxies ($M_*{sim}10^{11}M_odot$) having low $f_{rm DM}sim0.3$, which appears at odds with predictions from simple galaxy models. We show that these results are independent of the adopted orbital anisotropy, stellar mass-to-light ratio, and the assumed slope of the gravitational potential. However, the low $f_{rm DM}$ in the ~$10^{11}M_odot$ galaxies agrees with the cosmological simulations of Wu et al. where the pristine dark matter distribution has been modified by baryons during the galaxy assembly process. We find hints that these $M_*sim10^{11}M_odot$ galaxies with low $f_{rm DM}$ have very diffuse dark matter haloes, implying that they assembled late. Beyond $5R_{rm e}$, the $M/L$ gradients are steeper in the more massive galaxies and shallower in both low and intermediate mass galaxies.
Due to longer dynamical timescales, the outskirts of early-type galaxies retain the footprint of their formation and assembly. Under the popular two-phase galaxy formation scenario, an initial in-situ phase of star formation is followed by minor merg
Stellar metallicity gradients in the outer regions of galaxies are a critical tool for disentangling the contributions of in-situ and ex-situ formed stars. In the two-phase galaxy formation scenario, the initial gas collapse creates steep metallicity
Galaxy starlight at 3.6$mu$m is an excellent tracer of stellar mass. Here we use the latest 3.6$mu$m imaging from the Spitzer Space Telescope to measure the total stellar mass and effective radii in a homogeneous way for a sample of galaxies from the
Early-type (E and S0) galaxies may have assembled via a variety of different evolutionary pathways. Here we investigate these pathways by comparing the stellar kinematic properties of 24 early-type galaxies from the SLUGGS survey with the hydrodynami
Large galaxies may contain an atmosphere of hot interstellar X-ray gas, and the temperature and radial density profile of this gas can be used to measure the total mass of the galaxy contained within a given radius r. We use this technique for 102 ea