ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and decay pattern of linear-chain state in 14C

109   0   0.0 ( 0 )
 نشر من قبل Masaaki Kimura
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The linear-chain states of $^{14}$C are theoretically investigated by using the antisymmetrized molecular dynamics. The calculated excitation energies and the $alpha$ decay widths of the linear-chain states were compared with the observed data reported by the recent experiments. The properties of the positive-parity linear-chain states reasonably agree with the observation, that convinces us of the linear-chain formation in the positive-parity states. On the other hand, in the negative-parity states, it is found that the linear-chain configuration is fragmented into many states and do not form a single rotational band. As a further evidence of the linear-chain formation, we focus on the $alpha$ decay pattern. It is shown that the linear-chain states decay to the excited states of daughter nucleus $^{10}{rm Be}$ as well as to the ground state, while other cluster states dominantly decay into the ground state. Hence, we regard that this characteristic decay pattern is a strong signature of the linear-chain formation.



قيم البحث

اقرأ أيضاً

It is a well-known fact that a cluster of nucleons can be formed in the interior of an atomic nucleus, and such clusters may occupy molecular-like orbitals, showing characteristics similar to normal molecules consisting of atoms. Chemical molecules h aving a linear alignment are commonly seen in nature, such as carbon dioxide. A similar linear alignment of the nuclear clusters, referred to as linear-chain cluster state (LCCS), has been studied since the 1950s, however, up to now there is no clear experimental evidence demonstrating the existence of such a state. Recently, it was proposed that an excess of neutrons may offer just such a stabilizing mechanism, revitalizing interest in the nuclear LCCS, specifically with predictions for their emergence in neutron-rich carbon isotopes. Here we present the experimental observation of {alpha}-cluster states in the radioactive 14C nucleus. Using the 10Be+{alpha} resonant scattering method with a radioactive beam, we observed a series of levels which completely agree with theoretically predicted levels having an explicit linear-chain cluster configuration. We regard this as the first strong indication of the linear-chain clustered nucleus.
124 - N. Soic , M. Freer , L. Donadille 2003
A study of the 7Li(9Be,4He 10Be)2H reaction at E{beam}=70 MeV has been performed using resonant particle spectroscopy techniques and provides the first measurements of alpha-decaying states in 14C. Excited states are observed at 14.7, 15.5, 16.4, 18. 5, 19.8, 20.6, 21.4, 22.4 and 24.0 MeV. The experimental technique was able to resolve decays to the various particle bound states in 10Be, and provides evidence for the preferential decay of the high energy excited states into states in 10Be at ~6 MeV. The decay processes are used to indicate the possible cluster structure of the 14C excited states.
We investigate the linear-chain configurations of four-$alpha$ clusters in $^{16}$O using a Skyrme cranked Hartree-Fock method and discuss the relationship between the stability of such states and angular momentum. We show the existence of a region o f angular momentum (13-18 $hbar$) where the linear chain configuration is stabilized. For the first time we demonstrate that stable exotic states with a large moment of inertia ($hbar^2/2Theta$ $sim$ 0.06-0.08 MeV) can exist.
49 - J. Li , Y.L. Ye , Z.H. Li 2017
A cluster-transfer experiment $^9$Be($^9$Be,$^{14}$C$^*rightarrowalpha$+$^{10}$Be)$alpha$ was carried out using an incident beam energy of 45 MeV. This reaction channel has a large $Q$-value that favors populating the high-lying states in $^{14}$C an d separating various reaction channels. A number of resonant states are reconstructed from the forward emitting $^{10}$Be + $alpha$ fragments with respect to three sets of well discriminated final states in $^{10}$Be, most of which agree with the previous observations. A state at 22.5(1) MeV in $^{14}$C is found to decay predominantly into the states around 6 MeV in $^{10}$Be daughter nucleus, in line with the unique property of the predicted band head of the $sigma$-bond linear-chain molecular states. A new state at 23.5(1) MeV is identified which decays strongly into the first excited state of $^{10}$Be.
The stability of the linear chain structure of three $alpha$ clusters for $^{12}$C against the bending and fission is investigated in the cranking covariant density functional theory, in which the equation of motion is solved on a 3D lattice with the inverse Hamiltonian and the Fourier spectral methods. Starting from a twisted three $alpha$ initial configuration, it is found that the linear chain structure is stable when the rotational frequency is within the range of $sim$2.0 MeV to $sim$2.5 MeV. Beyond this range, the final states are not stable against fission. By examining the density distributions and the occupation of single-particle levels, however, these fissions are found to arise from the occupation of unphysical continuum with large angular momenta. To properly remove these unphysical continuum, a damping function for the cranking term is introduced. Eventually, the stable linear chain structure could survive up to the rotational frequency $sim$3.5 MeV, but the fission still occurs when the rotational frequency approaches to $sim$4.0 MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا