ﻻ يوجد ملخص باللغة العربية
We present an XMM-Newton X-ray observation of TRAPPIST-1, which is an ultracool dwarf star recently discovered to host three transiting and temperate Earth-sized planets. We find the star is a relatively strong and variable coronal X-ray source with an X-ray luminosity similar to that of the quiet Sun, despite its much lower bolometric luminosity. We find L_x/L_bol=2-4x10^-4, with the total XUV emission in the range L_xuv/L_bol=6-9x10^-4, and XUV irradiation of the planets that is many times stronger than experienced by the present-day Earth. Using a simple energy-limited model we show that the relatively close-in Earth-sized planets, which span the classical habitable zone of the star, are subject to sufficient X-ray and EUV irradiation to significantly alter their primary and any secondary atmospheres. Understanding whether this high-energy irradiation makes the planets more or less habitable is a complex question, but our measured fluxes will be an important input to the necessary models of atmospheric evolution.
Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted
Ultracool dwarfs (UCD; $T_{rm eff}<sim3000~$K) cool to settle on the main sequence after $sim$1 Gyr. For brown dwarfs, this cooling never stops. Their habitable zone (HZ) thus sweeps inward at least during the first Gyr of their lives. Assuming they
One focus of modern astronomy is to detect temperate terrestrial exoplanets well-suited for atmospheric characterisation. A milestone was recently achieved with the detection of three Earth-sized planets transiting (i.e. passing in front of) a star j
Context. The TRAPPIST-1 system hosts seven Earth-sized, temperate exoplanets orbiting an ultra-cool dwarf star. As such, it represents a remarkable setting to study the formation and evolution of terrestrial planets that formed in the same protoplane
Exoplanets residing close to their stars can experience evolution of both their physical structures and their orbits due to the influence of their host stars. In this work, we present a coupled analysis of dynamical tidal dissipation and atmospheric