ترغب بنشر مسار تعليمي؟ اضغط هنا

Athermal rheology of weakly attractive soft particles

132   0   0.0 ( 0 )
 نشر من قبل Ehsan Irani
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the rheology of a soft particulate system where the inter-particle interactions are weakly attractive. Using extensive molecular dynamics simulations, we scan across a wide range of packing fractions ($phi$), attraction strengths ($u$) and imposed shear-rates ($dot{gamma}$). In striking contrast to repulsive systems, we find that at small shear-rates generically a fragile isostatic solid is formed even if we go to $phi ll phi_J$. Further, with increasing shear-rates, even at these low $phi$, non-monotonic flow curves occur which lead to the formation of persistent shear-bands in large enough systems. By tuning the damping parameter, we also show that inertia plays an important role in this process. Furthermore, we observe enhanced particle dynamics in the attraction-dominated regime as well as a pronounced anisotropy of velocity and diffusion constant, which we take as precursors to the formation of shear bands. At low enough $phi$, we also observe structural changes via the interplay of low shear-rates and attraction with the formation of micro-clusters and voids. Finally, we characterize the properties of the emergent shear bands and thereby, we find surprisingly small mobility of these bands, leading to prohibitely long time-scales and extensive history effects in ramping experiments.



قيم البحث

اقرأ أيضاً

The rheology of cohesive granular materials, under a constant pressure condition, is studied using molecular dynamics simulations. Depending on the shear rate, pressure, and interparticle cohesiveness, the system exhibits four distinctive phases: uni form shear, oscillation, shear-banding, and clustering. The friction coefficient is found to increase with the inertial number, irrespective of the cohesiveness. The friction coefficient becomes larger for strong cohesion. This trend is explained by the anisotropies of the coordination number and angular distribution of the interparticle forces. In particular, we demonstrate that the second-nearest neighbors play a role in the rheology of cohesive systems.
We study numerically and analytically a model of self-propelled polar disks on a substrate in two dimensions. The particles interact via isotropic repulsive forces and are subject to rotational noise, but there is no aligning interaction. As a result , the system does not exhibit an ordered state. The isotropic fluid phase separates well below close packing and exhibits the large number fluctuations and clustering found ubiquitously in active systems. Our work shows that this behavior is a generic property of systems that are driven out of equilibrium locally, as for instance by self propulsion.
We construct colloidal ``sticky rods from the semi-flexible filamentous fd virus and temperature-sensitive polymers poly(N-isopropylacrylamide) (PNIPAM). The phase diagram of fd-PNIPAM system becomes independent of ionic strength at high salt concent ration and low temperature, i.e. the rods are sterically stabilized by the polymer. However, the network of sticky rods undergoes a sol-gel transition as the temperature is raised. The viscoelastic moduli of fd and fd-PNIPAM suspensions are compared as a function of temperature, and the effect of ionic strength on the gelling behavior of fd-PNIPAM solution is measured. For all fluidlike and solidlike samples, the frequency-dependant linear viscoelastic moduli can be scaled onto universal master curves.
160 - Takahiro Hatano 2009
We simulate a relaxation process of non-brownian particles in a sheared viscous medium; the small shear strain is initially applied to a system, which then undergoes relaxation. The relaxation time and the correlation length are estimated as function s of density, which algebraically diverge at the jamming density. This implies that the relaxation time can be scaled by the correlation length using the dynamic critical exponent, which is estimated as 4.6(2). It is also found that shear stress undergoes power-law decay at the jamming density, which is reminiscent of critical slowing down.
Soft cellular systems, such as foams or biological tissues, exhibit highly complex rheological properties, even in the quasistatic regime, that numerical modeling can help to apprehend. We present a numerical implementation of quasistatic strain with in the widely used cellular Potts model. The accuracy of the method is tested by simulating the quasistatic strain 2D dry foams, both ordered and disordered. The implementation of quasistatic strain in CPM allows the investigation of sophisticated interplays between stress-strain relationship and structural changes that take place in cellular systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا