ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic transport at the LaAlO3/SrTiO3 interface explained by microscopic imaging of channel-flow over SrTiO3 domains

96   0   0.0 ( 0 )
 نشر من قبل Beena Kalisky
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Oxide interfaces, including the LaAlO3/SrTiO3 interface, have been a subject of intense interest for over a decade due to their rich physics and potential as low dimensional nanoelectronic systems. The field has reached the stage where efforts are invested in developing devices. It is critical now to understand the functionalities and limitations of such devices. Recent scanning probe measurements of the LaAlO3/SrTiO3 interface have revealed locally enhanced current flow and accumulation of charge along channels related to SrTiO3 structural domains. These observations raised a key question regarding the role these modulations play in the macroscopic properties of devices. Here we show that the microscopic picture, mapped by scanning superconducting quantum interference device, accounts for a substantial part of the macroscopically measured transport anisotropy. We compared local flux data with transport values, measured simultaneously, over various SrTiO3 domain configurations. We show a clear relation between maps of local current density over specific domain configurations and the measured anisotropy for the same device. The domains divert the direction of current flow, resulting in a direction dependent resistance. We also show that the modulation can be significant and that in some cases up to 95% of the current is modulated over the channels. The orientation and distribution of the SrTiO3 structural domains change between different cooldowns of the same device or when electric fields are applied, affecting the device behavior. Our results, highlight the importance of substrate physics, and in particular, the role of structural domains, in controlling electronic properties of LaAlO3/SrTiO3 devices. Further, these results point to new research directions, exploiting the STO domains ability to divert or even carry current.



قيم البحث

اقرأ أيضاً

Interplay of spin, charge, orbital and lattice degrees of freedom in oxide heterostructures results in a plethora of fascinating properties, which can be exploited in new generations of electronic devices with enhanced functionalities. The paradigm e xample is the interface between the two band insulators LaAlO3 and SrTiO3 (LAO/STO) that hosts two-dimensional electron system (2DES). Apart from the mobile charge carriers, this system exhibits a range of intriguing properties such as field effect, superconductivity and ferromagnetism, whose fundamental origins are still debated. Here, we use soft-X-ray angle-resolved photoelectron spectroscopy to penetrate through the LAO overlayer and access charge carriers at the buried interface. The experimental spectral function directly identifies the interface charge carriers as large polarons, emerging from coupling of charge and lattice degrees of freedom, and involving two phonons of different energy and thermal activity. This phenomenon fundamentally limits the carrier mobility and explains its puzzling drop at high temperatures.
682 - Y. Lei , Y. Z. Chen , Y. W. Xie 2014
Electrical field and light-illumination have been two most widely used stimuli in tuning the conductivity of semiconductor devices. Via capacitive effect electrical field modifies the carrier density of the devices, while light-illumination generates extra carriers by exciting trapped electrons into conduction band1. Here, we report on an unexpected light illumination enhanced field effect in a quasi-two-dimensional electron gas (q2DEG) confined at the LaAlO3/SrTiO3 (LAO/STO) interface which has been the focus of emergent phenomenon exploration2-14. We found that light illumination greatly accelerates and amplifies the field effect, driving the field-induced resistance growth which originally lasts for thousands of seconds into an abrupt resistance jump more than two orders of magnitude. Also, the field-induced change in carrier density is much larger than that expected from the capacitive effect, and can even be opposite to the conventional photoelectric effect. This work expands the space for novel effect exploration and multifunctional device design at complex oxide interfaces.
The oxide heterostructure LaAlO3/SrTiO3 supports a two-dimensional electron liquid with a variety of competing phases including magnetism, superconductivity and weak antilocalization due to Rashba spin-orbit coupling. Further confinement of this 2D e lectron liquid to the quasi-one-dimensional regime can provide insight into the underlying physics of this system and reveal new behavior. Here we describe magnetotransport experiments on narrow LaAlO3/SrTiO3 structures created by a conductive atomic force microscope lithography technique. Four-terminal local transport measurements on ~10-nm-wide Hall bar structures yield longitudinal resistances that are comparable to the resistance quantum h/e2 and independent of the channel length. Large nonlocal resistances (as large as 10^4 ohms) are observed in some but not all structures with separations between current and voltage that are large compared to the 2D mean-free path. The nonlocal transport is strongly suppressed by the onset of superconductivity below ~200 mK. The origin of these anomalous transport signatures is not understood, but may arise from coherent transport defined by strong spin-orbit coupling and/or magnetic interactions.
111 - Ryo Ohshima 2016
A d-orbital electron has an anisotropic electron orbital and is a source of magnetism. The realization of a 2-dimensional electron gas (2DEG) embedded at a LaAlO3/SrTiO3 interface surprised researchers in materials and physical sciences because the 2 DEG consists of 3d-electrons of Ti with extraordinarily large carrier mobility, even in the insulating oxide heterostructure. To date, a wide variety of physical phenomena, such as ferromagnetism and the quantum Hall effect, have been discovered in this 2DEG systems, demonstrating the ability of the d-electron 2DEG systems to provide a material platform for the study of interesting physics. However, because of both ferromagnetism and the Rashba field, long-range spin transport and the exploitation of spintronics functions have been believed difficult to implement in the d-electron 2DEG systems. Here, we report the experimental demonstration of room-temperature spin transport in the d-electron-based 2DEG at a LaAlO3/SrTiO3 interface, where the spin relaxation length is ca. exceeding 200 nm. Our finding, which counters the conventional understandings to d-electron 2DEGs, opens a new field of d-electron spintronics. Furthermore, this work highlights a novel spin function in the conductive oxide system.
141 - A. Dubroka , M. Roessle , K.W. Kim 2009
With infrared ellipsometry and transport measurements we investigated the electrons at the interface between LaAlO3 and SrTiO3. We obtained a sheet carrier density of Ns~5-9x 10E13 cm^-2, an effective mass of m*~3m_e, and a strongly frequency depende nt mobility. The latter are similar as in bulk SrTi1-xNbxO3 and therefore suggestive of polaronic correlations of the confined carriers. We also determined the vertical density profile which has a strongly asymmetric shape with a rapid initial decay over the first 2 nm and a pronounced tail that extends to about 11 nm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا