ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometric and Kinematic Structure of the Outflow/Envelope System of L1527 Revealed by Subarcsecond-resolution Observation of CS

89   0   0.0 ( 0 )
 نشر من قبل Yoko Oya
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Subarcsecond-resolution images of the rotational line emissions of CS and c-C$_3$H$_2$ obtained toward the low-mass protostar IRAS 04368$+$2557 in L1527 with the Atacama Large Millimeter/submillimeter Array are investigated to constrain the orientation of the outflow/envelope system. The distribution of CS consists of an envelope component extending from north to south and a faint butterfly-shaped outflow component. The kinematic structure of the envelope is well reproduced by a simple ballistic model of an infalling rotating envelope. Although the envelope has a nearly edge-on configuration, the inclination angle of the rotation axis from the plane of the sky is found to be 5$^circ$, where we find that the western side of the envelope faces the observer. This configuration is opposite to the direction of the large-scale ($sim$ 10$^4$ AU) outflow suggested previously from the $^{12}$CO ($J$=3$-$2) observation, and to the morphology of infrared reflection near the protostar ($sim$ 200 AU). The latter discrepancy could originate from high extinction by the outflow cavity of the western side, these discrepancies or may indicate that the outflow axis is not parallel to the rotation axis of the envelope. Position-velocity diagrams show the accelerated outflow cavity wall, and its kinematic structure in the 2000 AU scale is explained by a standard parabolic model with the inclination angle derived from the analysis of the envelope. The different orientation of the outflow between the small and large scale implies a possibility of precession of the outflow axis. The shape and the velocity of the outflow in the vicinity of the protostar are compared with those of other protostars.



قيم البحث

اقرأ أيضاً

Sub-arcsecond ($0.^{primeprime}5$) images of H$_2$CO and CCH line emission have been obtained in the $0.8$ mm band toward the low-mass protostar IRAS 15398-3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submi llimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about $20^circ$, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle, and the mass of the protostar is estimated to be less than $0.09 M_odot$. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H$_2$CO emission associated with the protostar.
Sub-millimeter spectral line and continuum emission from the protoplanetary disks and envelopes of protostars are powerful probes of their structure, chemistry, and dynamics. Here we present a benchmark study of our modeling code, RadChemT, that for the first time uses a chemical model to reproduce ALMA C$^{18}$O (2-1) and CARMA $^{12}$CO (1-0) and N$_{2}$H$^{+}$ (1-0) observations of L1527, that allow us to distinguish the disk, the infalling envelope and outflow of this Class 0/I protostar. RadChemT combines dynamics, radiative transfer, gas chemistry and gas-grain reactions to generate models which can be directly compared with observations for individual protostars. Rather than individually fit abundances to a large number of free parameters, we aim to best match the spectral line maps by (i) adopting a physical model based on density structure and luminosity derived primarily from previous work that fit SED and 2D imaging data, updating it to include a narrow jet detected in CARMA and ALMA data near ($leq 75$au) the protostar, and then (ii) computing the resulting astrochemical abundances for 292 chemical species. Our model reproduces the C$^{18}$O and N$_{2}$H$^{+}$ line strengths within a factor of 3.0; this is encouraging considering the pronounced abundance variation (factor $> 10^3$) between the outflow shell and CO snowline region near the midplane. Further, our modeling confirms suggestions regarding the anti-correlation between N$_{2}$H$^{+}$ and the CO snowline between 400 au to 2,000 au from the central star. Our modeling tools represent a new and powerful capability with which to exploit the richness of spectral line imaging provided by modern submillimeter interferometers.
The bipolar outflow associated with the Class 0 low-mass protostellar source (IRAS 18148-0440) in L483 has been studied in the CCH and CS line emission at 245 and 262 GHz, respectively. Sub-arcsecond resolution observations of these lines have been c onducted with ALMA. Structures and kinematics of the outflow cavity wall are investigated in the CS line, and are analyzed by using a parabolic model of an outflow. We constrain the inclination angle of the outflow to be from 75 degree to 90 degree, i.e. the outflow is blowing almost perpendicular to the line of sight. Comparing the outflow parameters derived from the model analysis with those of other sources, we confirm that the opening angle of the outflow and the gas velocity on its cavity wall correlate with the dynamical timescale of the outflows. Moreover, a hint of a rotating motion of the outflow cavity wall is found. Although the rotation motion is marginal, the specific angular momentum of the gas on the outflow cavity wall is evaluated to be comparable to or twice that of the infalling-rotating envelope of L483.
Sub-arcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365$+$2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The veloc ity structure of the compact component of CS reveals infalling-rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling-rotating envelope with the radius of the centrifugal barrier (a half of the centrifugal radius) of 50 AU, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 AU scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.
The S-type asymptotic giant branch (AGB) star $pi^{1}$ Gruis has a known companion at a separation of $approx$400 AU. The envelope structure, including an equatorial torus and a fast bipolar outflow, is rarely seen in the AGB phase and is particularl y unexpected in such a wide binary system. Therefore a second, closer companion has been suggested, but the evidence is not conclusive. The new ALMA $^{12}$CO and $^{13}$CO $J$=3-2 data, together with previously published $^{12}$CO $J$=2-1 data from the Submillimeter Array (SMA), and the $^{12}$CO $J$=5-4 and $J$=9-8 lines observed with Herschel/Heterodyne Instrument for the Far-Infrared (HIFI), is modeled with the 3D non-LTE radiative transfer code SHAPEMOL. The data analysis clearly confirms the torus-bipolar structure. The 3D model of the CSE that satisfactorily reproduces the data consists of three kinematic components: a radially expanding torus with velocity slowly increasing from 8 to 13 km s$^{-1}$ along the equator plane; a radially expanding component at the center with a constant velocity of 14 km s$^{-1}$; and a fast, bipolar outflow with velocity proportionally increasing from 14 km s$^{-1}$ at the base up to 100 km s$^{-1}$ at the tip, following a linear radial dependence. The results are used to estimate an average mass-loss rate during the creation of the torus of 7.7$times$10$^{-7}$ M$_{odot}$ yr$^{-1}$. The total mass and linear momentum of the fast outflow are estimated at 7.3$times$10$^{-4}$ M$_{odot}$ and 9.6$times$10$^{37}$ g cm s$^{-1}$, respectively. The momentum of the outflow is in excess (by a factor of about 20) of what could be generated by radiation pressure alone, in agreement with recent findings for more evolved sources. The best-fit model also suggests a $^{12}$CO/$^{13}$CO abundance ratio of 50. Possible shaping scenarios for the gas envelope are discussed
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا