ﻻ يوجد ملخص باللغة العربية
We present a simple model for gas and dust flow from 67P/Churyumov-Gerasimenko that can be used to understand the grain impact observed by the DIM instrument on Philae (Krueger et al. 2015) We show how model results when applied to the GIADA measurements (Rotundi et al. 2015; Della Corte et al. 2015) can be used, in conjunction with the results found by the MIRO (Schloerb et al. 2015) and VIRTIS (De Sanctis et al. 2015) instruments to infer surface properties such as surface temperature and surface ice fraction.
The Rosetta lander Philae successfully landed on the nucleus of comet 67P/Churyumov-Gerasimenko on 12 November 2014. Philae carries the Dust Impact Monitor (DIM) on board, which is part of the Surface Electric Sounding and Acoustic Monitoring Experim
Comets are thought to preserve almost pristine dust particles, thus providing a unique sample of the properties of the early solar nebula. The microscopic properties of this dust played a key part in particle aggregation during the formation of the S
Dust is an important constituent in cometary comae; its analysis is one of the major objectives of ESAs Rosetta mission to comet 67P/Churyumov-Gerasimenko (C-G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in
The Philae lander of the Rosetta mission, aimed at the in situ investigation of comet 67P/C-G, was deployed to the surface of the comet nucleus on 12 Nov 2014 at 2.99 AU heliocentric distance. The Dust Impact Monitor (DIM) as part of the Surface Elec
We use the gravitational instability formation scenario of cometesimals to derive the aggregate size that can be released by the gas pressure from the nucleus of comet 67P/Churyumov-Gerasimenko for different heliocentric distances and different volat