ترغب بنشر مسار تعليمي؟ اضغط هنا

Untangling knots via reaction-diffusion dynamics of vortex strings

168   0   0.0 ( 0 )
 نشر من قبل Paul Sutcliffe
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce and illustrate a new approach to the unknotting problem via the dynamics of vortex strings in a nonlinear partial differential equation of reaction-diffusion type. To untangle a given knot, a Biot-Savart construction is used to initialize the knot as a vortex string in the FitzHugh-Nagumo equation. Remarkably, we find that the subsequent evolution preserves the topology of the knot and can untangle an unknot into a circle. Illustrative test case examples are presented, including the untangling of a hard unknot known as the culprit. Our approach to the unknotting problem has two novel features, in that it applies field theory rather than particle mechanics and uses reaction-diffusion dynamics in place of energy minimization.



قيم البحث

اقرأ أيضاً

The FitzHugh-Nagumo equation provides a simple mathematical model of cardiac tissue as an excitable medium hosting spiral wave vortices. Here we present extensive numerical simulations studying long-term dynamics of knotted vortex string solutions fo r all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presented, thereby providing a novel field theory approach to the study of knots. Furthermore, the evolution yields a well-defined minimal length for each knot that is comparable to the ropelength of ideal knots. We highlight the role of the medium boundary in stabilizing the length of the knot and discuss the implications beyond torus knots. By applying Moffatts test we are able to show that there is not a unique attractor within a given knot topology.
We study the dynamics and interaction of coaxial vortex rings in the FitzHugh-Nagumo excitable medium. We find that threading vortex rings with a vortex string results in significant qualitative differences in their evolution and interaction. In part icular, threading prevents the annihilation of rings in a head-on collision, allows generic ring overtaking, and can even reverse the direction of motion of a ring. We identify that an important mechanism for producing this new behaviour is that threaded vortex rings interact indirectly via induced twisting of the threading vortex string.
Experimental studies of protein-pattern formation have stimulated new interest in the dynamics of reaction-diffusion systems. However, a comprehensive theoretical understanding of the dynamics of such highly nonlinear, spatially extended systems is s till missing. Here we show how a description in phase space, which has proven invaluable in shaping our intuition about the dynamics of nonlinear ordinary differential equations, can be generalized to mass-conserving reaction-diffusion (McRD) systems. We present a comprehensive analysis of two-component McRD systems, which serve as paradigmatic minimal systems that encapsulate the core principles and concepts of the local equilibria theory introduced in the paper. The key insight underlying this theory is that shifting local (reactive) equilibria -- controlled by the local total density -- give rise to concentration gradients that drive diffusive redistribution of total density. We show how this dynamic interplay can be embedded in the phase plane of the reaction kinetics in terms of simple geometric objects: the reactive nullcline and the diffusive flux-balance subspace. On this phase-space level, physical insight can be gained from geometric criteria and graphical constructions. The effects of nonlinearities on the global dynamics are simply encoded in the curved shape of the reactive nullcline. In particular, we show that the pattern-forming `Turing instability in McRD systems is a mass-redistribution instability, and that the features and bifurcations of patterns can be characterized based on regional dispersion relations, associated to distinct spatial regions (plateaus and interfaces) of the patterns. In an extensive outlook section, we detail concrete approaches to generalize local equilibria theory in several directions, including systems with more than two-components, weakly-broken mass conservation, and active matter systems.
In this paper we present the results of parallel numerical computations of the long-term dynamics of linked vortex filaments in a three-dimensional FitzHugh-Nagumo excitable medium. In particular, we study all torus links with no more than 12 crossin gs and identify a timescale over which the dynamics is regular in the sense that each link is well-described by a spinning rigid conformation of fixed size that propagates at constant speed along the axis of rotation. We compute the properties of these links and demonstrate that they have a simple dependence on the crossing number of the link for a fixed number of link components. Furthermore, we find that instabilities that exist over longer timescales in the bulk can be removed by boundary interactions that yield stable torus links which settle snugly at the medium boundary. The Borromean rings are used as an example of a non-torus link to demonstrate both the irregular tumbling dynamics that arises in the bulk and its suppression by a tight confining medium. Finally, we investigate the collision of torus links and reveal that this produces a complicated wrestling motion where one torus link can eventually dominate over the other by pushing it into the boundary of the medium.
In the present work, we explore the existence, stability and dynamics of single and multiple vortex ring states that can arise in Bose-Einstein condensates. Earlier works have illustrated the bifurcation of such states, in the vicinity of the linear limit, for isotropic or anisotropic three-dimensional harmonic traps. Here, we extend these states to the regime of large chemical potentials, the so-called Thomas-Fermi limit, and explore their properties such as equilibrium radii and inter-ring distance, for multi-ring states, as well as their vibrational spectra and possible instabilities. In this limit, both the existence and stability characteristics can be partially traced to a particle picture that considers the rings as individual particles oscillating within the trap and interacting pairwise with one another. Finally, we examine some representative instability scenarios of the multi-ring dynamics including breakup and reconnections, as well as the transient formation of vortex lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا