ﻻ يوجد ملخص باللغة العربية
We review recent results on intermediate mass cluster production in heavy ion collisions at Fermi energy and in spallation reactions. Our studies are based on modern transport theories, employing effective interactions for the nuclear mean-field and incorporating two-body correlations and fluctuations. Namely we will consider the Stochastic Mean Field (SMF) approach and the recently developed Boltzmann-Langevin One Body (BLOB) model. We focus on cluster production emerging from the possible occurrence of low-density mean-field instabilities in heavy ion reactions. Within such a framework, the respective role of one and two-body effects, in the two models considered, will be carefully analysed. We will discuss, in particular, fragment production in central and semi-peripheral heavy ion collisions, which is the object of many recent experimental investigations. Moreover, in the context of spallation reactions, we will show how thermal expansion may trigger the development of mean-field instabilities, leading to a cluster formation process which competes with important re-aggregation effects.
Perturbing fluids of neutrons and protons (nuclear matter) may lead, as the most catastrophic effect, to the rearrangement of the fluid into clusters of nucleons. A similar process may occur in a single atomic nucleus undergoing a violent perturbatio
We demonstrate, within symmetry unrestricted time-dependent density functional theory, the existence of new effects in low-energy nuclear reactions which originate from superfluidity. The dynamics of the pairing field induces solitonic excitations in
Within the Time Dependent Hartree Fock (TDHF) approach, we investigate the impact of several ingredients of the nuclear effective interaction, such as incompressibility, symmetry energy, effective mass, derivative of the Lane potential and surface te
The mean-field approximation based on effective interactions or density functionals plays a pivotal role in the description of finite quantum many-body systems that are too large to be treated by ab initio methods. Examples are strongly interacting a
The halo factor is one of the experimental data which describes a distribution of neutrons in nuclear periphery. In the presented paper we use Skyrme-Hartree (SH) and the Relativistic Mean Field (RMF) models and we calculate the neutron excess factor