ﻻ يوجد ملخص باللغة العربية
We introduce a system-independent method to derive effective atomic C$_6$ coefficients and polarizabilities in molecules and materials purely from charge population analysis. This enables the use of dispersion-correction schemes in electronic structure calculations without recourse to electron-density partitioning schemes and expands their applicability to semi-empirical methods and tight-binding Hamiltonians. We show that the accuracy of our method is en par with established electron-density partitioning based approaches in describing intermolecular C$_6$ coefficients as well as dispersion energies of weakly bound molecular dimers, organic crystals, and supramolecular complexes. We showcase the utility of our approach by incorporation of the recently developed many-body dispersion (MBD) method [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012)] into the semi-empirical Density Functional Tight-Binding (DFTB) method and propose the latter as a viable technique to study hybrid organic-inorganic interfaces.
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets. We investigate the hyperfine and nuclear quadrupole interactions for $^{161
Accurate and efficient calculations of absorption spectra of molecules and materials are essential for the understanding and rational design of broad classes of systems. Solving the Bethe-Salpeter equation (BSE) for electron-hole pairs usually yields
We investigate a recently developed approach [P. L. Silvestrelli, Phys. Rev. Lett. 100, 053002 (2008); J. Phys. Chem. A 113, 5224 (2009)] that uses maximally localized Wannier functions to evaluate the van der Waals contribution to the total energy o
Double-Weyl fermions, as novel topological states of matter, have been mostly discussed in nonmagnetic materials. Here, based on density-functional theory and symmetry analysis, we propose the realization of fully spin-polarized double-Weyl fermions
Charge migration is a ubiquitous phenomenon with profound implications throughout many areas of chemistry, physics, biology and materials science. The long-term vision of designing functional materials with tailored molecular scale properties has tri