ترغب بنشر مسار تعليمي؟ اضغط هنا

The COSMOS2015 Catalog: Exploring the 1<z<6 Universe with half a million galaxies

110   0   0.0 ( 0 )
 نشر من قبل Clotilde Laigle
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the COSMOS2015 catalog which contains precise photometric redshifts and stellar masses for more than half a million objects over the 2deg$^{2}$ COSMOS field. Including new $YJHK_{rm s}$ images from the UltraVISTA-DR2 survey, $Y$-band from Subaru/Hyper-Suprime-Cam and infrared data from the Spitzer Large Area Survey with the Hyper-Suprime-Cam Spitzer legacy program, this near-infrared-selected catalog is highly optimized for the study of galaxy evolution and environments in the early Universe. To maximise catalog completeness for bluer objects and at higher redshifts, objects have been detected on a $chi^{2}$ sum of the $YJHK_{rm s}$ and $z^{++}$ images. The catalog contains $sim 6times 10^5$ objects in the 1.5 deg$^{2}$ UltraVISTA-DR2 region, and $sim 1.5times 10^5$ objects are detected in the ultra-deep stripes (0.62 deg$^{2}$) at $K_{rm s}leq 24.7$ (3$sigma$, 3, AB magnitude). Through a comparison with the zCOSMOS-bright spectroscopic redshifts, we measure a photometric redshift precision of $sigma_{Delta z/(1+z_s)}$ = 0.007 and a catastrophic failure fraction of $eta=0.5$%. At $3<z<6$, using the unique database of spectroscopic redshifts in COSMOS, we find $sigma_{Delta z/(1+z_s)}$ = 0.021 and $eta=13.2% $. The deepest regions reach a 90% completeness limit of 10$^{10}M_odot$ to $z=4$. Detailed comparisons of the color distributions, number counts, and clustering show excellent agreement with the literature in the same mass ranges. COSMOS2015 represents a unique, publicly available, valuable resource with which to investigate the evolution of galaxies within their environment back to the earliest stages of the history of the Universe. The COSMOS2015 catalog is distributed via anonymous ftp (ftp://ftp.iap.fr/pub/from_users/hjmcc/COSMOS2015/) and through the usual astronomical archive systems (CDS, ESO Phase 3, IRSA).



قيم البحث

اقرأ أيضاً

We present clustering properties from 579,492 Lyman break galaxies (LBGs) at z~4-6 over the 100 deg^2 sky (corresponding to a 1.4 Gpc^3 volume) identified in early data of the Hyper Suprime-Cam (HSC) Subaru strategic program survey. We derive angular correlation functions (ACFs) of the HSC LBGs with unprecedentedly high statistical accuracies at z~4-6, and compare them with the halo occupation distribution (HOD) models. We clearly identify significant ACF excesses in 10<$theta$<90, the transition scale between 1- and 2-halo terms, suggestive of the existence of the non-linear halo bias effect. Combining the HOD models and previous clustering measurements of faint LBGs at z~4-7, we investigate dark-matter halo mass (Mh) of the z~4-7 LBGs and its correlation with various physical properties including the star-formation rate (SFR), the stellar-to-halo mass ratio (SHMR), and the dark matter accretion rate (dotMh) over a wide-mass range of Mh/M$_odot$=4x10^10-4x10^12. We find that the SHMR increases from z~4 to 7 by a factor of ~4 at Mh~1x10^11 M$_odot$, while the SHMR shows no strong evolution in the similar redshift range at Mh~1x10^12 M$_odot$. Interestingly, we identify a tight relation of SFR/dotMh-Mh showing no significant evolution beyond 0.15 dex in this wide-mass range over z~4-7. This weak evolution suggests that the SFR/dotMh-Mh relation is a fundamental relation in high-redshift galaxy formation whose star formation activities are regulated by the dark matter mass assembly. Assuming this fundamental relation, we calculate the cosmic SFR densities (SFRDs) over z=0-10 (a.k.a. Madau-Lilly plot). The cosmic SFRD evolution based on the fundamental relation agrees with the one obtained by observations, suggesting that the cosmic SFRD increase from z~10 to 4-2 (decrease from z~4-2 to 0) is mainly driven by the increase of the halo abundance (the decrease of the accretion rate).
A well calibrated method to describe the environment of galaxies at all redshifts is essential for the study of structure formation. Such a calibration should include well understood correlations with halo mass, and the possibility to identify galaxi es which dominate their potential well (centrals), and their satellites. Focusing on z = 1 and 2 we propose a method of environmental calibration which can be applied to the next generation of low to medium resolution spectroscopic surveys. Using an up-to-date semi-analytic model of galaxy formation, we measure the local density of galaxies in fixed apertures on different scales. There is a clear correlation of density with halo mass for satellite galaxies, while a significant population of low mass centrals is found at high densities in the neighbourhood of massive haloes. In this case the density simply traces the mass of the most massive halo within the aperture. To identify central and satellite galaxies, we apply an observationally motivated stellar mass rank method which is both highly pure and complete, especially in the more massive haloes where such a division is most meaningful. Finally we examine a test case for the recovery of environmental trends: the passive fraction of galaxies and its dependence on stellar and halo mass for centrals and satellites. With careful calibration, observationally defined quantities do a good job of recovering known trends in the model. This result stands even with reduced redshift accuracy, provided the sample is deep enough to preserve a wide dynamic range of density.
We present the Advanced Camera for Surveys General Catalog (ACS-GC), a photometric and morphological database using publicly available data obtained with the Advanced Camera for Surveys (ACS) instrument on the Hubble Space Telescope. The goal of the ACS-GC database is to provide a large statistical sample of galaxies with reliable structural and distance measurements to probe the evolution of galaxies over a wide range of look-back times. The ACS-GC includes approximately 470,000 astronomical sources (stars + galaxies) derived from the AEGIS, COSMOS, GEMS, and GOODS surveys. Galapagos was used to construct photometric (SExtractor) and morphological (Galfit) catalogs. The analysis assumes a single Sersic model for each object to derive quantitative structural parameters. We include publicly available redshifts from the DEEP2, COMBO-17, TKRS, PEARS, ACES, CFHTLS,and zCOSMOS surveys to supply redshifts (spectroscopic and photometric) for a considerable fraction (~74%) of the imaging sample. The ACS-GC includes color postage stamps, Galfit residual images, and photometry, structural parameters, and redshifts combined into a single catalog.
Whether among the myriad tiny proto-galaxies there exists a population with similarities to present day galaxies is an open question. We show, using BlueTides, the first hydrodynamic simulation large enough to resolve the relevant scales, that the fi rst massive galaxies to form are %in fact predicted to have extensive rotationally-supported disks. Although their morphology resembles in some ways Milky-way types seen at much lower redshifts, these high-redshift galaxies are smaller, denser, and richer in gas than their low redshift counterparts. From a kinematic analysis of a statistical sample of 216 galaxies at redshift $z=8-10$ we have found that disk galaxies make up 70% of the population of galaxies with stellar mass $10^{10} M_odot$ or greater. Cold Dark Matter cosmology therefore makes specific predictions for the population of large galaxies 500 million years after the Big Bang. We argue that wide-field satellite telescopes (e.g. WFIRST) will in the near future discover these first massive disk galaxies. The simplicity of their structure and formation history should make possible new tests of cosmology.
We investigate quasar outflows at $z geq 6$ by performing zoom-in cosmological hydrodynamical simulations. By employing the SPH code GADGET-3, we zoom in the $2 R_{200}$ region around a $2 times 10^{12} M_{odot}$ halo at $z = 6$, inside a $(500 ~ {rm Mpc})^3$ comoving volume. We compare the results of our AGN runs with a control simulation in which only stellar/SN feedback is considered. Seeding $10^5 M_{odot}$ BHs at the centers of $10^{9} M_{odot}$ halos, we find the following results. BHs accrete gas at the Eddington rate over $z = 9 - 6$. At $z = 6$, our most-massive BH has grown to $M_{rm BH} = 4 times 10^9 M_{odot}$. Fast ($v_{r} > 1000$ km/s), powerful ($dot{M}_{rm out} sim 2000 M_{odot}$/yr) outflows of shock-heated low-density gas form at $z sim 7$, and propagate up to hundreds kpc. Star-formation is quenched over $z = 8 - 6$, and the total SFR (SFR surface density near the galaxy center) is reduced by a factor of $5$ ($1000$). We analyse the relative contribution of multiple physical process: (i) disrupting cosmic filamentary cold gas inflows, (ii) reducing central gas density, (iii) ejecting gas outside the galaxy; and find that AGN feedback has the following effects at $z = 6$. The inflowing gas mass fraction is reduced by $sim 12 %$, the high-density gas fraction is lowered by $sim 13 %$, and $sim 20 %$ of the gas outflows at a speed larger than the escape velocity ($500$ km/s). We conclude that quasar-host galaxies at $z geq 6$ are accreting non-negligible amount of cosmic gas, nevertheless AGN feedback quenches their star formation dominantly by powerful outflows ejecting gas out of the host galaxy halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا