We outline a procedure for using matrix mechanics to compute energy eigenvalues and eigenstates for two and three interacting particles in a confining trap, in one dimension. Such calculations can bridge a gap in the undergraduate physics curriculum between single-particle and many-particle quantum systems, and can also provide a pathway from standard quantum mechanics course material to understanding current research on cold-atom systems. In particular we illustrate the notion of fermionization and how it occurs not only for the ground state in the presence of strong repulsive interactions, but also for excited states, in both the strongly attractive and strongly repulsive regimes.