ترغب بنشر مسار تعليمي؟ اضغط هنا

Horizon Shells: Classical Structure at the Horizon of a Black Hole

286   0   0.0 ( 0 )
 نشر من قبل Matthias Blau
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the question of the uniqueness of the Schwarzschild black hole by considering the following question: How many meaningful solutions of the Einstein equations exist that agree with the Schwarzschild solution (with a fixed mass m) everywhere except maybe on a codimension one hypersurface? The perhaps surprising answer is that the solution is unique (and uniquely the Schwarzschild solution everywhere in spacetime) *unless* the hypersurface is the event horizon of the Schwarzschild black hole, in which case there are actually an infinite number of distinct solutions. We explain this result and comment on some of the possible implications for black hole physics.



قيم البحث

اقرأ أيضاً

An insightful viewpoint was proposed by Susskind about AMPS firewall: the region behind the firewall does not exist and the firewall is an extension of the singularity. In this work, we provided a possible picture of this idea by combining Newmans co mplex metric and Dvali-Gomez BEC black holes, which are Bose-Einstein condensates of N gravitons. The inner space behind the horizon is a realized imaginary space encrusted by the real space outside the horizon. In this way, the singularity extents to the horizon to make a firewall for the infalling observer. Some gravitons escape during the fluctuation of the BEC black hole, resulting in a micro-transparent horizon which makes the firewall exposes slightly to an observer outside the horizon. This picture allows limited communications across the horizon.
We revisit the theory of null shells in general relativity, with a particular emphasis on null shells placed at horizons of black holes. We study in detail the considerable freedom that is available in the case that one solders two metrics together a cross null hypersurfaces (such as Killing horizons) for which the induced metric is invariant under translations along the null generators. In this case the group of soldering transformations turns out to be infinite dimensional, and these solderings create non-trivial horizon shells containing both massless matter and impulsive gravitational wave components. We also rephrase this result in the language of Carrollian symmetry groups. To illustrate this phenomenon we discuss in detail the example of shells on the horizon of the Schwarzschild black hole (with equal interior and exterior mass), uncovering a rich classical structure at the horizon and deriving an explicit expression for the general horizon shell energy-momentum tensor. In the special case of BMS-like soldering supertranslations we find a conserved shell-energy that is strikingly similar to the standard expression for asymptotic BMS supertranslation charges, suggesting a direct relation between the physical properties of these horizon shells and the recently proposed BMS supertranslation hair of a black hole.
Linear perturbations of extremal black holes exhibit the Aretakis instability, in which higher derivatives of a scalar field grow polynomially with time along the event horizon. This suggests that higher derivative corrections to the classical equati ons of motion may become large, indicating a breakdown of effective field theory at late time on the event horizon. We investigate whether or not this happens. For extremal Reissner-Nordstrom we argue that, for a large class of theories, general covariance ensures that the higher derivative corrections to the equations of motion appear only in combinations that remain small compared to two derivative terms so effective field theory remains valid. For extremal Kerr, the situation is more complicated since backreaction of the scalar field is not understood even in the two derivative theory. Nevertheless we argue that the effects of the higher derivative terms will be small compared to the two derivative terms as long as the spacetime remains close to extremal Kerr.
To find the origin of chaos near black hole horizon in string-theoretic AdS/CFT correspondence, we perform a chaos analysis of a suspended string in AdS black hole backgrounds. It has a definite CFT interpretation: chaos of Wilson loops, or in other words, sensitive time-evolution of a quark antiquark force in thermal gauge theories. Our nonlinear numerical simulation of the suspended Nambu-Goto string shows chaos, which would be absent in pure AdS background. The calculated Lyapunov exponent $lambda$ satisfies the universal bound $lambda leq 2pi T_{rm H}$ for the Hawking temperature $T_{rm H}$. We also analyze a toy model of a rectangular string probing the horizon and show that it contains a universal saddle characterized by the surface gravity $2pi T_{rm H}$. Our work demonstrates that the black hole horizon is the origin of the chaos, and suggests a close interplay between chaos and quark deconfinement.
We investigate the separability of Klein-Gordon equation on near horizon of d-dimensional rotating Myers-Perry black hole in two limits : 1) generic extremal case and 2) extremal vanishing horizon case. In the first case , there is a relation between the mass and rotation parameters so that black hole temperature vanishes. In the latter case, one of the rotation parameters is restricted to zero on top of the extremality condition. We show that the Klein-Gordon equation is separable in both cases. Also, we solved the radial part of that equation and discuss its behaviour in small and large r regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا