ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Annotation of Structured Facts in Images

140   0   0.0 ( 0 )
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the application of fact-level image understanding, we present an automatic method for data collection of structured visual facts from images with captions. Example structured facts include attributed objects (e.g., <flower, red>), actions (e.g., <baby, smile>), interactions (e.g., <man, walking, dog>), and positional information (e.g., <vase, on, table>). The collected annotations are in the form of fact-image pairs (e.g.,<man, walking, dog> and an image region containing this fact). With a language approach, the proposed method is able to collect hundreds of thousands of visual fact annotations with accuracy of 83% according to human judgment. Our method automatically collected more than 380,000 visual fact annotations and more than 110,000 unique visual facts from images with captions and localized them in images in less than one day of processing time on standard CPU platforms.



قيم البحث

اقرأ أيضاً

We present ARETA, an automatic error type annotation system for Modern Standard Arabic. We design ARETA to address Arabics morphological richness and orthographic ambiguity. We base our error taxonomy on the Arabic Learner Corpus (ALC) Error Tagset w ith some modifications. ARETA achieves a performance of 85.8% (micro average F1 score) on a manually annotated blind test portion of ALC. We also demonstrate ARETAs usability by applying it to a number of submissions from the QALB 2014 shared task for Arabic grammatical error correction. The resulting analyses give helpful insights on the strengths and weaknesses of different submissions, which is more useful than the opaque M2 scoring metrics used in the shared task. ARETA employs a large Arabic morphological analyzer, but is completely unsupervised otherwise. We make ARETA publicly available.
Automatic description generation from natural images is a challenging problem that has recently received a large amount of interest from the computer vision and natural language processing communities. In this survey, we classify the existing approac hes based on how they conceptualize this problem, viz., models that cast description as either generation problem or as a retrieval problem over a visual or multimodal representational space. We provide a detailed review of existing models, highlighting their advantages and disadvantages. Moreover, we give an overview of the benchmark image datasets and the evaluation measures that have been developed to assess the quality of machine-generated image descriptions. Finally we extrapolate future directions in the area of automatic image description generation.
We propose a method to annotate segmentation masks accurately and automatically using invisible marker for object manipulation. Invisible marker is invisible under visible (regular) light conditions, but becomes visible under invisible light, such as ultraviolet (UV) light. By painting objects with the invisible marker, and by capturing images while alternately switching between regular and UV light at high speed, massive annotated datasets are created quickly and inexpensively. We show a comparison between our proposed method and manual annotations. We demonstrate semantic segmentation for deformable objects including clothes, liquids, and powders under controlled environmental light conditions. In addition, we show demonstrations of liquid pouring tasks under uncontrolled environmental light conditions in complex environments such as inside the office, house, and outdoors. Furthermore, it is possible to capture data while the camera is in motion so it becomes easier to capture large datasets, as shown in our demonstration.
Pathological is crucial to cancer diagnosis. Usually, Pathologists draw their conclusion based on observed cell and tissue structure on histology slides. Rapid development in machine learning, especially deep learning have established robust and accu rate classifiers. They are being used to analyze histopathological slides and assist pathologists in diagnosis. Most machine learning systems rely heavily on annotated data sets to gain experiences and knowledge to correctly and accurately perform various tasks such as classification and segmentation. This work investigates different granularity of annotations in histopathological data set including image-wise, bounding box, ellipse-wise, and pixel-wise to verify the influence of annotation in pathological slide on deep learning models. We design corresponding experiments to test classification and segmentation performance of deep learning models based on annotations with different annotation granularity. In classification, state-of-the-art deep learning-based classifiers perform better when trained by pixel-wise annotation dataset. On average, precision, recall and F1-score improves by 7.87%, 8.83% and 7.85% respectively. Thus, it is suggested that finer granularity annotations are better utilized by deep learning algorithms in classification tasks. Similarly, semantic segmentation algorithms can achieve 8.33% better segmentation accuracy when trained by pixel-wise annotations. Our study shows not only that finer-grained annotation can improve the performance of deep learning models, but also help extracts more accurate phenotypic information from histopathological slides. Intelligence systems trained on granular annotations may help pathologists inspecting certain regions for better diagnosis. The compartmentalized prediction approach similar to this work may contribute to phenotype and genotype association studies.
Clinical notes contain information not present elsewhere, including drug response and symptoms, all of which are highly important when predicting key outcomes in acute care patients. We propose the automatic annotation of phenotypes from clinical not es as a method to capture essential information to predict outcomes in the Intensive Care Unit (ICU). This information is complementary to typically used vital signs and laboratory test results. We demonstrate and validate our approach conducting experiments on the prediction of in-hospital mortality, physiological decompensation and length of stay in the ICU setting for over 24,000 patients. The prediction models incorporating phenotypic information consistently outperform the baseline models leveraging only vital signs and laboratory test results. Moreover, we conduct a thorough interpretability study, showing that phenotypes provide valuable insights at the patient and cohort levels. Our approach illustrates the viability of using phenotypes to determine outcomes in the ICU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا