ترغب بنشر مسار تعليمي؟ اضغط هنا

Unified entropic measures of quantum correlations induced by local measurements

75   0   0.0 ( 0 )
 نشر من قبل Gustavo Martin Bosyk
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce quantum correlations measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of non-additive entropies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlations measures based on non-additive entropies when an uncorrelated ancilla is appended to the system without changing the computability of our entropic correlations measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlations measures based on von Neumann and Renyi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some relations between them. Finally, we obtain analytical expressions of the entropic correlations measures for typical quantum bipartite systems.



قيم البحث

اقرأ أيضاً

90 - N. Canosa , M. Cerezo , N. Gigena 2017
We discuss a generalization of the conditional entropy and one-way information deficit in quantum systems, based on general entropic forms. The formalism allows to consider simple entropic forms for which a closed evaluation of the associated optimiz ation problem in qudit-qubit systems is shown to become feasible, allowing to approximate that of the quantum discord. As application, we examine quantum correlations of spin pairs in the exact ground state of finite $XY$ spin chains in a magnetic field through the quantum discord and information deficit. While these quantities show a similar behavior, their optimizing measurements exhibit significant differences, which can be understood and predicted through the previous approximations. The remarkable behavior of these quantities in the vicinity of transverse and non-transverse factorizing fields is also discussed.
We define the notion of mutual quantum measurements of two macroscopic objects and investigate the effect of these measurements on the velocities of the objects. We show that multiple mutual quantum measurements can lead to an effective force emergin g as a consequence of asymmetric diffusion in the velocity space. We further show that, under a certain set of assumptions involving the measurements of mutual Doppler shifts, the above force can reproduce Newtons law of gravitation. Such a mechanism would explain the equivalence between the gravitational and the inertial masses. For a broader class of measurements, the emergent force can also lead to corrections to Newtons gravitation.
What singles out quantum mechanics as the fundamental theory of Nature? Here we study local measurements in generalised probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalisation of Dvoretzkys theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.
Continuously monitoring the environment of a quantum many-body system reduces the entropy of (purifies) the reduced density matrix of the system, conditional on the outcomes of the measurements. We show that, for mixed initial states, a balanced comp etition between measurements and entangling interactions within the system can result in a dynamical purification phase transition between (i) a phase that locally purifies at a constant system-size-independent rate, and (ii) a mixed phase where the purification time diverges exponentially in the system size. The residual entropy density in the mixed phase implies the existence of a quantum error-protected subspace where quantum information is reliably encoded against the future non-unitary evolution of the system. We show that these codes are of potential relevance to fault-tolerant quantum computation as they are often highly degenerate and satisfy optimal tradeoffs between encoded information densities and error thresholds. In spatially local models in 1+1 dimensions, this phase transition for mixed initial states occurs concurrently with a recently identified class of entanglement phase transitions for pure initial states. The mutual information of an initially completely-mixed state in 1+1 dimensions grows sublinearly in time due to the formation of the error protected subspace. The purification transition studied here also generalizes to systems with long-range interactions, where conventional notions of entanglement transitions have to be reformulated. Purification dynamics is likely a more robust probe of the transition in experiments, where imperfections generically reduce entanglement and drive the system towards mixed states. We describe the motivations for studying this novel class of non-equilibrium quantum dynamics in the context of advanced quantum computing platforms and fault-tolerant quantum computation.
We show that, for any n, there are m-outcome quantum correlations, with m>n, which are stronger than any nonsignaling correlation produced from selecting among n-outcome measurements. As a consequence, for any n, there are m-outcome quantum measureme nts that cannot be constructed by selecting locally from the set of n-outcome measurements. This is a property of the set of measurements in quantum theory that is not mandatory for general probabilistic theories. We also show that this prediction can be tested through high-precision Bell-type experiments and identify past experiments providing evidence that some of these strong correlations exist in nature. Finally, we provide a modified version of quantum theory restricted to having at most n-outcome quantum measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا