ﻻ يوجد ملخص باللغة العربية
We show that the problem of determining whether a knot in the 3-sphere is non-trivial lies in NP. This is a consequence of the following more general result. The problem of determining whether the Thurston norm of a second homology class in a compact orientable 3-manifold is equal to a given integer is in NP. As a corollary, the problem of determining the genus of a knot in the 3-sphere is in NP. We also show that the problem of determining whether a compact orientable 3-manifold has incompressible boundary is in NP.
We present an overview of the study of the Thurston norm, introduced by W. P. Thurston in the seminal paper A norm for the homology of 3-manifolds (written in 1976 and published in 1986). We first review fundamental properties of the Thurston norm of
Given a triangulation of a closed, oriented, irreducible, atoroidal 3-manifold every oriented, incompressible surface may be isotoped into normal position relative to the triangulation. Such a normal oriented surface is then encoded by non-negative i
The classifying space for the framed Haefliger structures of codimension $q$ and class $C^r$ is $(2q-1)$-connected, for $1le rleinfty$. The corollaries deal with the existence of foliations, with the homology and the perfectness of the diffeomorphism
We establish a form of the h-principle for the existence of foliations quasi-complementary to a given one; the same methods also provide a proof of the classical Mather-Thurston theorem.
Thurston norms are invariants of 3-manifolds defined on their second homology vector spaces, and understanding the shape of their dual unit ball is a (widely) open problem. W. Thurston showed that every symmetric polygon in Z^2, whose vertices satisf