ﻻ يوجد ملخص باللغة العربية
We report photometric and spectroscopic observations of the optical transient LSQ13zm. Historical data reveal the presence of an eruptive episode (that we label as `2013a) followed by a much brighter outburst (`2013b) three weeks later, that we argue to be the genuine supernova explosion. This sequence of events closely resemble those observed for SN2010mc and (in 2012) SN2009ip. The absolute magnitude reached by LSQ13zm during 2013a ($M_R=-14.87pm0.25,rm{mag}$) is comparable with those of supernova impostors, while that of the 2013b event ($M_R=-18.46pm0.21,rm{mag}$) is consistent with those of interacting supernovae. Our spectra reveal the presence of a dense and structured circumstellar medium, probably produced through numerous pre-supernova mass-loss events. In addition, we find evidence for high-velocity ejecta, with a fraction of gas expelled at more than 20000kms. The spectra of LSQ13zm show remarkable similarity with those of well-studied core-collapse supernovae. From the analysis of the available photometric and spectroscopic data, we conclude that we first observed the last event of an eruptive sequence from a massive star, likely a Luminous Blue Variable, which a short time later exploded as a core-collapse supernova. The detailed analysis of archival images suggest that the host galaxy is a star-forming Blue Dwarf Compact Galaxy.
We report the results of a 3 year-long dedicated monitoring campaign of a restless Luminous Blue Variable (LBV) in NGC 7259. The object, named SN 2009ip, was observed photometrically and spectroscopically in the optical and near-infrared domains. We
The interaction of a supernova with a circumstellar medium (CSM) can dramatically increase the emitted luminosity by converting kinetic energy to thermal energy. In superluminous supernovae (SLSNe) of Type IIn -- named for narrow hydrogen lines in th
Stripped-envelope supernovae (Type IIb, Ib, Ic) showing little or no hydrogen are one of the main classes of explosions of massive stars. Their origin and the evolution of their progenitors are not fully understood as yet. Very massive single stars s
We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova SN 2015bn, at redshift z=0.1136, spanning +250-400 d after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag/(100 d) t
Observational surveys are now able to detect an increasing number of transients, such as core-collapse supernovae (SN) and powerful non-terminal outbursts (SN impostors). Dedicated spectroscopic facilities can follow up these events shortly after det