The unimodality of the Ehrhart $delta$-polynomial of the chain polytope of the zig-zag poset


الملخص بالإنكليزية

We prove the unimodality of the Ehrhart $delta$-polynomial of the chain polytope of the zig-zag poset, which was conjectured by Kirillov. First, based on a result due to Stanley, we show that this polynomial coincides with the $W$-polynomial for the zig-zag poset with some natural labeling. Then, its unimodality immediately follows from a result of Gasharov, which states that the $W$-polynomials of naturally labeled graded posets of rank $1$ or $2$ are unimodal.

تحميل البحث