ﻻ يوجد ملخص باللغة العربية
We present an angle-resolved photoemission study of the electronic structure of the three-dimensional pyrochlore iridate Nd2Ir2O7 through its magnetic metal-insulator transition. Our data reveal that metallic Nd2Ir2O7 has a quadratic band, touching the Fermi level at the Gamma point, similarly to that of Pr2Ir2O7. The Fermi node state is, therefore, a common feature of the metallic phase of the pyrochlore iridates. Upon cooling below the transition temperature, this compound exhibits a gap opening with an energy shift of quasiparticle peaks like a band gap insulator. The quasiparticle peaks are strongly suppressed, however, with further decrease of temperature, and eventually vanish at the lowest temperature, leaving a non-dispersive flat band lacking long-lived electrons. We thereby identify a remarkable crossover from Slater to Mott insulators with decreasing temperature. These observations explain the puzzling absence of Weyl points in this material, despite its proximity to the zero temperature metal-insulator transition.
Since the beginnings of the electronic age, a quest for ever faster and smaller switches has been initiated, since this element is ubiquitous and foundational in any electronic circuit to regulate the flow of current. Mott insulators are promising ca
Despite decades of experimental and theoretical efforts, the origin of metal-insulator transitions (MIT) in strongly-correlated materials is one of the main longstanding problems in condensed matter physics. An archetypal example is V2O3, where elect
We present a temperature-dependent x-ray absorption (XAS) and resonant elastic x-ray scattering (REXS) study of the metal-insulator transition (MIT) in Sr3(Ru1-xMnx)2O7. The XAS results reveal that the MIT drives the onset of local antiferromagnetic
1T-TaS$_2$ undergoes successive phase transitions upon cooling and eventually enters an insulating state of mysterious origin. Some consider this state to be a band insulator with interlayer stacking order, yet others attribute it to Mott physics tha
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This