ﻻ يوجد ملخص باللغة العربية
Modern applications of robotics typically involve a robot control system with an inner PI (proportional-integral) or PID (proportional-integral-derivative) control loop and an outer user-specified control loop. The existing outer loop controllers, however, do not take into consideration the dynamic effects of robots and their effectiveness relies on the ad hoc assumption that the inner PI or PID control loop is fast enough, and other torque-based control algorithms cannot be implemented in robotics with closed architecture. This paper investigates the adaptive control of robotic systems with an inner/outer loop structure, taking into full account the effects of the dynamics and the system uncertainties, and both the task-space control and joint-space control are considered. We propose a dynamic modularity approach to resolve this issue, and a class of adaptive outer loop control schemes is proposed and their role is to dynamically generate the joint velocity (or position) command for the low-level joint servoing loop. Without relying on the ad hoc assumption that the joint servoing is fast enough or the modification of the low-level joint controller structure, we rigorously show that the proposed outer loop controllers can ensure the stability and convergence of the closed-loop system. We also propose the outer lo
This paper investigates the visual servoing problem for robotic systems with uncertain kinematic, dynamic, and camera parameters. We first present the passivity properties associated with the overall kinematics of the system, and then propose two pas
An analytical approach for a dynamic cyber-security problem that captures progressive attacks to a computer network is presented. We formulate the dynamic security problem from the defenders point of view as a supervisory control problem with imperfe
A novel adaptive control approach is proposed to solve the globally asymptotic state stabilization problem for uncertain pure-feedback nonlinear systems which can be transformed into the pseudo-affine form. The pseudo-affine pure-feedback nonlinear s
In this paper, a uniform approach to maximal permissiveness in modular control of discrete-event systems is proposed. It is based on three important concepts of modular closed-loops: monotonicity, distributivity, and exchangeability. Monotonicity of
Networked robotic systems, such as connected vehicle platoons, can improve the safety and efficiency of transportation networks by allowing for high-speed coordination. To enable such coordination, these systems rely on networked communications. This