ﻻ يوجد ملخص باللغة العربية
A novel diamond anvil cell suitable for electrical transport measurements under high pressure has been developed. A boron-doped metallic diamond film was deposited as an electrode onto a nano-polycrystalline diamond anvil using a microwave plasma-assisted chemical vapor deposition technique combined with electron beam lithography. The electrical transport measurements of Pb were performed up to 8 GPa, and the maximum pressure reached was above 30 GPa. The boron-doped metallic diamond electrodes showed no signs of degradation after repeated compression measurements.
A diamond anvil cell (DAC) which can generate extremely high pressure of multi-megabar is promising tool to develop a further physics such a high-transition temperature superconductivity. However, electrical transport measurements, which is one of th
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger tha
This work investigates the high-pressure structure of freestanding superconducting ($T_{c}$ = 4.3,K) boron doped diamond (BDD) and how it affects the electronic and vibrational properties using Raman spectroscopy and x-ray diffraction in the 0-30,GPa
We consider superconductivity in boron (B) doped diamond using a simplified model for the valence band of diamond. We treat the effects of substitutional disorder of B ions by the coherent potential approximation (CPA) and those of the attractive for
Scanning tunneling spectroscopies are performed below 100~mK on nano-crystalline boron-doped diamond films characterized by Transmission Electron Microscopy and transport measurements. We demonstrate a strong correlation between the local superconduc