ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulse-compression ghost imaging lidar via coherent detection

116   0   0.0 ( 0 )
 نشر من قبل Chenjin Deng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ghost imaging (GI) lidar, as a novel remote sensing technique,has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the targets spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which can dramatically improve the detection sensitivity and detection range.



قيم البحث

اقرأ أيضاً

For remote sensing, high-resolution imaging techniques are helpful to catch more characteristic information of the target. We extend pseudo-thermal light ghost imaging to the area of remote imaging and propose a ghost imaging lidar system. For the fi rst time, we demonstrate experimentally that the real-space image of a target at about 1.0 km range with 20 mm resolution is achieved by ghost imaging via sparsity constraints (GISC) technique. The characters of GISC technique compared to the existing lidar systems are also discussed.
Ghost imaging LiDAR via sparsity constraints using push-broom scanning is proposed. It can image the stationary target scene continuously along the scanning direction by taking advantage of the relative movement between the platform and the target sc ene. Compared to conventional ghost imaging LiDAR that requires multiple speckle patterns staring the target, ghost imaging LiDAR via sparsity constraints using push-broom scanning not only simplifies the imaging system, but also reduces the sampling number. Numerical simulations and experiments have demonstrated its efficiency.
The image information acquisition ability of a conventional camera is usually much lower than the Shannon Limit since it does not make use of the correlation between pixels of image data. Applying a random phase modulator to code the spectral images and combining with compressive sensing (CS) theory, a spectral camera based on true thermal light ghost imaging via sparsity constraints (GISC spectral camera) is proposed and demonstrated experimentally. GISC spectral camera can acquire the information at a rate significantly below the Nyquist rate, and the resolution of the cells in the three-dimensional (3D) spectral images data-cube can be achieved with a two-dimensional (2D) detector in a single exposure. For the first time, GISC spectral camera opens the way of approaching the Shannon Limit determined by Information Theory in optical imaging instruments.
Ghost imaging is an unconventional optical imaging technique that reconstructs the shape of an object combining the measurement of two signals: one that interacted with the object, but without any spatial information, the other containing spatial inf ormation, but that never interacted with the object. Ghost imaging is a very flexible technique, that has been generalized to the single-photon regime, to the time domain, to infrared and terahertz frequencies, and many more conditions. Here we demonstrate that ghost imaging can be performed without ever knowing the patterns illuminating the object, but using patterns correlated with them, doesnt matter how weakly. As an experimental proof we exploit the recently discovered correlation between the reflected and transmitted light from a scattering layer, and reconstruct the image of an object hidden behind a scattering layer using only the reflected light, which never interacts with the object. This method opens new perspectives for non-invasive imaging behind or within turbid media.
133 - Huan Cui , Jie Cao , Qun Hao 2021
Ghost imaging (GI) is a novel imaging method, which can reconstruct the object information by the light intensity correlation measurements. However, at present, the field of view (FOV) is limited to the illuminating range of the light patterns. To en large FOV of GI efficiently, here we proposed the omnidirectional ghost imaging system (OGIS), which can achieve a 360{deg} omnidirectional FOV at one shot only by adding a curved mirror. Moreover, by designing the retina-like annular patterns with log-polar patterns, OGIS can obtain unwrapping-free undistorted panoramic images with uniform resolution, which opens up a new way for the application of GI.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا