ﻻ يوجد ملخص باللغة العربية
We describe theoretically the depairing effect of a microwave field on diffusive s-wave superconductors. The ground state of the superconductor is altered qualitatively in analogy to the depairing due to a dc current. In contrast to dc-depairing the density of states acquires, for microwaves with frequency $omega_0$, steps at multiples of the photon energy $Deltapm nhbaromega_0$ and shows an exponential-like tail in the subgap regime. We show that this ac-depairing explains the measured frequency shift of a superconducting resonator with microwave power at low temperatures.
We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop h
The quantum coherent coupling of completely different degrees of freedom is a challenging path towards creating new functionalities for quantum electronics. Usually the antagonistic coupling between spins of magnetic impurities and superconductivity
Superconductors can support large dissipation-free electrical currents only if vortex lines are effectively immobilized by material defects. Macroscopic critical currents depend on elemental interactions of vortices with individual pinning centers. P
We study the penetration field $H_{rm P}$ for vortex nanocrystals nucleated in micron-sized samples with edges aligned along the nodal and anti-nodal directions of the d-wave superconducting parameter of Bi$_2$Sr$_2$CaCu$_2$O$_{8 - delta}$. Here we p
A theory of the fluctuation-induced Nernst effect is developed for arbitrary magnetic fields and temperatures beyond the upper critical field line in a two-dimensional superconductor. First, we derive a simple phenomenological formula for the Nernst