The photoluminescence (PL) and absorption experiments have been performed in GaSe slab with incident light polarized perpendicular to c-axis of sample at 10K. An obvious energy difference of about 34meV between exciton absorption peak and PL peak (the highest energy peak) is observed. By studying the temperature dependence of PL spectra, we attribute it to energy difference between free exciton and bound exciton states, where main exciton absorption peak comes from free exciton absorption, and PL peak are attributed to recombination of bound exciton at 10K. This strong bound exciton effect is stable up to 50K. Moreover, the temperature dependence of integrated PL intensity and PL lifetime reveals that a non-radiative process, with active energy extracted as 0.5meV, dominates PL emission.