ﻻ يوجد ملخص باللغة العربية
We obtain analytical approximations for the expectation and variance of the Spectral Kurtosis estimator in the case of Gaussian and coherent transient time domain signals mixed with a quasi-stationary Gaussian background, which are suitable for practical estimations of their signal-to-noise ratio and duty-cycle relative to the instrumental integration time. We validate these analytical approximations by means of numerical simulations and demonstrate that such estimates are affected by statistical uncertainties that, for a suitable choice of the integration time, may not exceed a few percent. Based on these analytical results, we suggest a multiscale Spectral Kurtosis spectrometer design optimized for real-time detection of transient signals, automatic discrimination based on their statistical signature, and measurement of their properties.
We describe in general terms the practical use in astronomy of a higher-order statistical quantity called Spectral Kurtosis (SK), and describe the first implementation of SK-enabled firmware in the F-engine (Fourier transform-engine) of a digital FX
Due to its conceptual simplicity and its proven effectiveness in real-time detection and removal of radio frequency interference (RFI) from radio astronomy data, the Spectral Kurtosis (SK) estimator is likely to become a standard tool of a new genera
Time domain astronomy has come of age with astronomers now able to monitor the sky at high cadence both across the electromagnetic spectrum and using neutrinos and gravitational waves. The advent of new observing facilities permits new science, but t
Given a random text over a finite alphabet, we study the frequencies at which fixed-length words occur as subsequences. As the data size grows, the joint distribution of word counts exhibits a rich asymptotic structure. We investigate all linear comb
The professional literature provides one means to review the evolution and geographic distribution of the scientific communities engaged in solar and heliospheric physics. With help of the Astrophysics Data System (NASA/ADS), I trace the growth of th