ﻻ يوجد ملخص باللغة العربية
We present in detail the Einstein equations in the Baumgarte-Shapiro-Shibata-Nakamura formulation for the case of $D$ dimensional spacetimes with $SO(D-d)$ isometry based on a method originally introduced in Ref.1. Regularized expressions are given for a numerical implementation of this method on a vertex centered grid including the origin of the quasi-radial coordinate that covers the extra dimensions with rotational symmetry. Axisymmetry, corresponding to the value $d=D-2$, represents a special case with fewer constraints on the vanishing of tensor components and is conveniently implemented in a variation of the general method. The robustness of the scheme is demonstrated for the case of a black-hole head-on collision in $D=7$ spacetime dimensions with $SO(4)$ symmetry.
The numerical evolution of Einsteins field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modelling black hole production in TeV gravity sc
Gravitational waves are one of the most important diagnostic tools in the analysis of strong-gravity dynamics and have been turned into an observational channel with LIGOs detection of GW150914. Aside from their importance in astrophysics, black hole
We analyze how a quantum-gravity-induced change in the number of thermal dimensions (through a modified dispersion relation) affects the geometry and the thermodynamics of a charged black hole. To that end we resort to Kiselevs solution as the impact
In cite{Bahamonde:2019zea}, a spherically symmetric black hole (BH) was derived from the quadratic form of $f(T)$. Here we derive the associated energy, invariants of curvature, and torsion of this BH and demonstrate that the higher-order contributio
The production of numerical relativity waveforms that describe quasicircular binary black hole mergers requires high-quality initial data, and an algorithm to iteratively reduce residual eccentricity. To date, these tools remain closed source, or in