ﻻ يوجد ملخص باللغة العربية
We develop a finite-temperature hydrodynamic approach for a harmonically trapped one-dimensional quasicondensate and apply it to describe the phenomenon of frequency doubling in the breathing-mode oscillations of its momentum distribution. The doubling here refers to the oscillation frequency relative to the oscillations of the real-space density distribution, invoked by a sudden confinement quench. We find that the frequency doubling is governed by the quench strength and the initial temperature, rather than by the crossover from the ideal Bose gas to the quasicondensate regime. The hydrodynamic predictions are supported by the results of numerical simulations based on a finite-temperature c-field approach, and extend the utility of the hydrodynamic theory for low-dimensional quantum gases to the description of finite-temperature systems and their dynamics in momentum space.
We measure the position- and momentum- space breathing dynamics of trapped one-dimensional Bose gases. The profile in real space reveals sinusoidal width oscillations whose frequency varies continuously through the quasicondensate to ideal Bose gas c
In quantum gases with contact repulsion, the distribution of momenta of the atoms typically decays as $sim 1/|p|^4$ at large momentum $p$. Tans relation connects the amplitude of that $1/|p|^4$ tail to the adiabatic derivative of the energy with resp
We analyse the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability---a collective many-body bounce effect
We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system
We study cold dilute gases made of bosonic atoms, showing that in the mean-field one-dimensional regime they support stable out-of-equilibrium states. Starting from the 3D Boltzmann-Vlasov equation with contact interaction, we derive an effective 1D