ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized local frame transformation theory for excited species in external fields

316   0   0.0 ( 0 )
 نشر من قبل Panagiotis Giannakeas
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A rigorous theoretical framework is developed for a generalized local frame transformation theory (GLFT). The GLFT is applicable to the following systems: to Rydberg atoms or molecules in an electric field, or to negative ions in any combination of electric and/or magnetic fields. A first test application to the photoionization spectra of Rydberg atoms in an external electric field demonstrates dramatic improvement over the first version of the local frame transformation theory developed initially by Fano and Harmin. This revised GLFT theory yields non-trivial corrections because it now includes the full on-shell Hilbert space without adopting the truncations in the original theory. Comparisons of the semi-analytical GLFT Stark spectra with {it ab initio} numerical simulations yields errors in the range of a few tens of MHz, an improvement over the original Fano-Harmin theory whose errors are 10-100 times larger. Our analysis provides a systematic pathway to precisely describe the corresponding photoabsorption spectra that should be accurate enough to meet most modern experimental standards.



قيم البحث

اقرأ أيضاً

A detailed theoretical framework for highly excited Rydberg molecules is developed based on the generalized local frame transformation. Our approach avoids the use of pseudopotentials and yields analytical expressions for the body-frame reaction matr ix. The latter is used to obtain the molecular potential energy curves, but equally it can be employed for photodissociation, photoionization, or other processes. To illustrate the reliability and accuracy of our treatment we consider the Rb$^*-$Rb Rydberg molecule and compare our treatment with state-of-the-art alternative approaches. As a second application, the present formalism is used to re-analyze the vibrational spectra of Sr$^*-$Sr molecules, providing additional physical insight into their properties and a comparison of our results with corresponding measurements.
169 - M.C. Martins 2009
The most important processes for the creation of S12+ to S14+ ions excited states from the ground configurations of S9+ to S14+ ions in an electron cyclotron resonance ion source, leading to the emission of K X-ray lines, are studied. Theoretical val ues for inner-shell excitation and ionization cross sections, including double KL and triple KLL ionization, transition probabilities and energies for the deexcitation processes, are calculated in the framework of the multi-configuration Dirac-Fock method. With reasonable assumptions about the electron energy distribution, a theoretical K$alpha$ X-ray spectrum is obtained, which is compared to recent experimental data.
173 - Maxim Grigoriev 2012
We elaborate on the recently proposed Lagrangian parent formulation. In particular, we identify a natural choice of the allowed field configurations ensuring the equivalence of the parent and the starting point Lagrangians. We also analyze the struct ure of the generalized auxiliary fields employed in the parent formulation and establish the relationship between the parent Lagrangian and the recently proposed Lagrange structure for the unfolded dynamics. As an illustration of the parent formalism a systematic derivation of the frame-like Lagrangian for totally symmetric fields starting from the Fronsdal one is given. We also present a concise and manifestly sp(2)-symmetric form of the off-shell constraints and gauge symmetries for AdS higher spin fields at the nonlinear level.
Describing a particle in an external electromagnetic field is a basic task of quantum mechanics. The standard scheme for this is known as minimal coupling, and consists of replacing the momentum operators in the Hamiltonian by modified ones with an a dded vector potential. In lattice systems it is not so clear how to do this, because there is no continuous translation symmetry, and hence there are no momenta. Moreover, when time is also discrete, as in quantum walk systems, there is no Hamiltonian, only a unitary step operator. We present a unified framework of gauge theory for such discrete systems, keeping a close analogy to the continuum case. In particular, we show how to implement minimal coupling in a way that automatically guarantees unitary dynamics. The scheme works in any lattice dimension, for any number of internal degree of freedom, for walks that allow jumps to a finite neighborhood rather than to nearest neighbours, is naturally gauge invariant, and prepares possible extensions to non-abelian gauge groups.
In an SU(N) gauge field theory, the n-point Green functions, namely, propagators and vertices, transform under the simultaneous local gauge variations of the gluon vector potential and the quark matter field in such a manner that the physical observa bles remain invariant. In this article, we derive this intrinsically non perturbative transformation law for the quark propagator within the system of covariant gauges. We carry out its explicit perturbative expansion till O(g_s^6) and, for some terms, till O(g_s^8). We study the implications of this transformation for the quark-anti-quark condensate, multiplicative renormalizability of the massless quark propagator, as well as its relation with the quark-gluon vertex at the one-loop order. Setting the color factors C_F=1 and C_A=0, Landau-Khalatnikov-Fradkin transformation for the abelian case of quantum electrodynamics is trivially recovered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا