Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities


الملخص بالإنكليزية

Bosons hopping across sites and interacting on-site are the essence of the Bose-Hubbard model (BHM). Inspired by the success of BHM simulators with atoms in optical lattices, proposals for implementing the BHM with photons in coupled nonlinear cavities have emerged. Two coupled semiconductor microcavities constitute a model system where the hopping, interaction, and decay of exciton polaritons --- mixed light-matter quasiparticles --- can be engineered in combination with site-selective coherent driving to implement the driven-dissipative two-site optical BHM. Here we explore the interplay of interference and nonlinearity in this system, in a regime where three distinct density profiles can be observed under identical driving conditions. We demonstrate how the phase acquired by polaritons hopping between cavities can be controlled through effective polariton-polariton interactions. Our results open new perspectives for synthesizing density-dependent gauge fields for polaritons in two-dimensional multicavity systems.

تحميل البحث