ترغب بنشر مسار تعليمي؟ اضغط هنا

The decay of quadrupole-octupole $1^-$ states in $^{40}$Ca and $^{140}$Ce

74   0   0.0 ( 0 )
 نشر من قبل V. Derya
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Background: Two-phonon excitations originating from the coupling of two collective one-phonon states are of great interest in nuclear structure physics. One possibility to generate low-lying $E1$ excitations is the coupling of quadrupole and octupole phonons. Purpose: In this work, the $gamma$-decay behavior of candidates for the $(2_1^+otimes 3_1^-)_{1^-}$ state in the doubly-magic nucleus $^{40}$Ca and in the heavier and semi-magic nucleus $^{140}$Ce is investigated. Methods: $(vec{gamma},gamma)$ experiments have been carried out at the High Intensity $gamma$-ray Source (HI${gamma}$S) facility in combination with the high-efficiency $gamma$-ray spectroscopy setup $gamma^3$ consisting of HPGe and LaBr$_3$ detectors. The setup enables the acquisition of $gamma$-$gamma$ coincidence data and, hence, the detection of direct decay paths. Results: In addition to the known ground-state decays, for $^{40}$Ca the decay into the $3^-_1$ state was observed, while for $^{140}$Ce the direct decays into the $2^+_1$ and the $0^+_2$ state were detected. The experimentally deduced transition strengths and excitation energies are compared to theoretical calculations in the framework of EDF theory plus QPM approach and systematically analyzed for $N=82$ isotones. In addition, negative parities for two $J=1$ states in $^{44}$Ca were deduced simultaneously. Conclusions: The experimental findings together with the theoretical calculations support the two-phonon character of the $1^-_1$ excitation in the light-to-medium-mass nucleus $^{40}$Ca as well as in the stable even-even $N=82$ nuclei.



قيم البحث

اقرأ أيضاً

The evolution of quadrupole and octupole collectivity and their coupling is investigated in a series of even-even isotopes of the actinide Ra, Th, U, Pu, Cm, and Cf with neutron number in the interval $130leqslant Nleqslant 150$. The Hartree-Fock-Bog oliubov approximation, based on the parametrization D1M of the Gogny energy density functional, is employed to generate potential energy surfaces depending upon the axially-symmetric quadrupole and octupole shape degrees of freedom. The mean-field energy surface is then mapped onto the expectation value of the $sdf$ interacting-boson-model Hamiltonian in the boson condensate state as to determine the strength parameters of the boson Hamiltonian. Spectroscopic properties related to the octupole degree of freedom are produced by diagonalizing the mapped Hamiltonian. Calculated low-energy negative-parity spectra, $B(E3;3^{-}_{1}to 0^{+}_{1})$ reduced transition rates, and effective octupole deformation suggest that the transition from nearly spherical to stable octupole-deformed, and to octupole vibrational states occurs systematically in the actinide region.
$^{48}$Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the $betabeta(2 u)$ half-life measurement, reported here, provides a unique test of the nuclear physics involve d in the $betabeta$ matrix element calculation. Enriched $^{48}$Ca sources of two different thicknesses have been exposed in a time projection chamber, and yield T$_{1/2}^{2 u} = (4.3^{+2.4}_{-1.1} [{rm stat.}] pm 1.4 [{rm syst.}]) times 10^{19}$ years, compatible with the shell model calculations.
Inclusive as well as exclusive energy spectra of the light charged particles emitted in the $^{28}Si(E_{lab}=112.6 MeV) + ^{28}Si,^{12}C$ reactions have been measured at the Strasbourg VIVITRON facility in the angular range 15^0 - 150^0, using the IC ARE multidetector array. The experimental energy spectra of $alpha$-particles are generally well reproduced by the statistical model with a spin-dependent level density indicating the onset of defomations at high spin.
114 - W.Rother , A.Dewald , H.Iwasaki 2010
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutro n-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.
Low-spin states of 157Dy have been studied using the JUROGAM II array, following the 155Gd ({alpha}, 2n) reaction at a beam energy of 25 MeV. The level scheme of 157Dy has been expanded with four new bands. Rotational structures built on the [523]5/2 - and [402]3/2+ neutron orbitals constitute new additions to the level scheme as do many of the inter- and intra-band transitions. This manuscript also reports the observation of cross I- to (I-1)- and I- to (I-1)+ E1 dipole transitions inter-linking structures built on the [523]5/2- (band 5) and [402]3/2+ (band 7) neutron orbitals. These interlacing band structures are interpreted as the bands of parity doublets with simplex quantum number s = -i related to possible octupole correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا