ﻻ يوجد ملخص باللغة العربية
High redshift star-forming galaxies are discovered routinely through a flux excess in narrowband filters (NB) caused by an emission line. In most cases, the width of such filters is broad compared to typical line widths, and the throughput of the filters varies substantially within the bandpass. This leads to substantial uncertainties in redshifts and fluxes that are derived from the observations with one specific NB. In this work we demonstrate that the uncertainty in measured line parameters can be sharply reduced by using repeated observations of the same target field with filters that have slightly different transmittance curves. Such data are routinely collected with some large field imaging cameras that use multiple detectors and a separate filter for each of the detectors. An example is the NB118 data from ESOs VISTA InfraRed CAMera (VIRCAM). We carefully developed and characterized this method to determine more accurate redshift and line flux estimates from the ratio of apparent fluxes measured from observations in different narrowband filters and several matching broadband filters. Then, we tested the obtainable quality of parameter estimation both on simulated and actual observations for the example of Ha in the VIRCAM NB118 filters combined with broadband data in Y, J, H. We find that by using this method, the errors in the measured lines fluxes can be reduced up to almost an order of magnitude and that an accuracy in wavelength of better than 1nm can be achieved with the ~13nm wide NB118 filters.
We present a simple, efficient and robust approach to improve cosmological redshift measurements. The method is based on the presence of a reference sample for which a precise redshift number distribution (dN/dz) can be obtained for different pencil-
In this white paper, we present the scientific cases for adding narrowband optical filters to the Large Synoptic Survey Telescope (LSST). LSST is currently planning to observe the southern sky in 6 broadband optical filters. Three of the four LSST sc
Large photometric surveys provide a rich source of observations of quiescent galaxies, including a surprisingly large population at z>1. However, identifying large, but clean, samples of quiescent galaxies has proven difficult because of their near-d
Quantum noise sets a fundamental limit to the sensitivity of high-precision measurements. Suppressing it can be achieved by using non-classical states and quantum filters, which modify both the noise and signal response. We find a novel approach to r
We investigate the utility of the Tunable Filters (TFs) for obtaining flux calibrated emission line maps of extended objects such as galactic nebulae and nearby galaxies, using the OSIRIS instrument at the 10.4-m GTC. Despite a relatively large field