ﻻ يوجد ملخص باللغة العربية
We develop a simple numerical method that allows us to calculate the Bardeen-Cooper-Schriefer (BCS) superfluid transition temperature (Tc) precisely for any interaction potential. We apply it to a polarised, ultracold Fermi gas with long-range, anisotropic, dipolar interactions and include the effects of anisotropic exchange interactions. We pay particular attention to the short-range behaviour of dipolar gasses and re-examine current renormalisation methods. In particular, we find that dimerisation of both atoms and molecules significantly hampers the formation of a superfluid. The end result is that at high density/interaction strengths, we find Tc is orders of magnitude lower than previous calculations.
Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temper
We propose a model for addressing the superfluidity of two different Fermi species confined in a bilayer geometry of square optical lattices. The fermions are assumed to be molecules with interlayer s-wave interactions, whose dipole moments are orien
We report on the observation of a large anisotropy in the rethermalization dynamics of an ultracold dipolar Fermi gas driven out of equilibrium. Our system consists of an ultracold sample of strongly magnetic $^{167}$Er fermions, spin-polarized in th
We perform a theoretical study into how dipole-dipole interactions modify the properties of superfluid vortices within the context of a two-dimensional atomic Bose gas of co-oriented dipoles. The reduced density at a vortex acts like a giant anti-dip
In this paper, we study an extended bosonic t-J model in an optical lattice, which describes two-component hard-core bosons with a nearest-neighbor (NN) pseudo-spin interaction, and also inter- and intra-species dipole-dipole interactions (DDI). In p