ﻻ يوجد ملخص باللغة العربية
The Galactic transient V1309 Sco was the result of a merger in a low-mass star system, while V838 Mon was thought to be a similar merger event from a more massive B-type progenitor. In this paper we study an optical/IR transient discovered in the nearby galaxy NGC4490, which appeared similar to these merger events (unobscured progenitor, irregular multi-peaked light curve, increasingly red color, similar optical spectrum, IR excess at late times), but which had a higher peak luminosity and longer duration in outburst. NGC4490-OT has less in common with the class of SN~2008S-like transients. A progenitor detected in pre-eruption HST images, combined with upper limits in the IR, requires a luminous and blue progenitor that has faded in late-time HST images. The same source was detected by Spitzer and ground-based data as a luminous IR transient, indicating a transition to a self-obscured state qualitatively similar to the evolution seen in other stellar mergers and in LBVs. The post-outburst dust-obscured source is too luminous and too warm at late times to be explained with an IR echo, suggesting that the object survived the event. The luminosity of the enshrouded IR source is similar to that of the progenitor. Compared to proposed merger events, the more massive progenitor of NGC4490-OT seems to extend a correlation between stellar mass and peak luminosity, and may suggest that both of these correlate with duration. We show that spectra of NGC4490-OT and V838 Mon also resemble light-echo spectra of eta Car, prompting us to speculate that eta Car may be an extreme extension of this phenomenon.
Stellar feedback in the form of radiation pressure and magnetically-driven collimated outflows may limit the maximum mass that a star can achieve and affect the star-formation efficiency of massive pre-stellar cores. Here we present a series of 3D ad
We investigate a suspected very massive star in one of the most metal-poor dwarf galaxies, PHL~293B. Excitingly, we find the sudden disappearance of the stellar signatures from our 2019 spectra, in particular the broad H lines with P~Cygni profiles t
We present multi-epoch observations with the VLBA of SiO maser emission in the v=1, J=1-0 transition at 43 GHz from the remnant of the red nova V838 Mon. We model the positions of maser spots to derive a parallax of 0.166+/-0.060 mas. Combining this
Similar to their low-mass counterparts, massive stars likely form via the collapse of pre-stellar molecular cores. Recent observations suggest that most massive cores are subvirial (i.e., not supported by turbulence) and therefore are likely unstable
Very massive stars (M>100 M$_{odot}$) are very rare objects, but have a strong influence on their environment. The formation of this kind of objects is of prime importance in star formation, but observationally still poorly constrained. We report on