ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating the summer night sky brightness at a research field site on Lake Stechlin in northeastern Germany

115   0   0.0 ( 0 )
 نشر من قبل Andreas Jechow
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on luminance measurements of the summer night sky at a field site on a freshwater lake in northeastern Germany (Lake Stechlin) to evaluate the amount of artificial skyglow from nearby and distant towns in the context of a planned study on light pollution. The site is located about 70 km north of Berlin in a rural area possibly belonging to one of the darkest regions in Germany. Continuous monitoring of the zenith sky luminance between June and September 2015 was conducted utilizing a Sky Quality Meter. With this device, typical values for clear nights in the range of 21.5-21.7 mag$_{SQM}/$arcsec$^2$ were measured, which is on the order of the natural sky brightness during starry nights. On overcast nights, values down to 22.84 mag$_{SQM}/$arcsec$^2$ were obtained, which is about one third as bright as on clear nights. The luminance measured on clear nights as well as the darkening with the presence of clouds indicate that there is very little influence of artificial skyglow on the zenith sky brightness at this location. Furthermore, fish-eye lens sky imaging luminance photometry was performed with a digital single-lens reflex camera on a clear night in the absence of moonlight. The photographs unravel several distant towns as possible sources of light pollution on the horizon. However, the low level of artificial skyglow makes the field site at Lake Stechlin an excellent location to study the effects of skyglow on a lake ecosystem in a controlled fashion.



قيم البحث

اقرأ أيضاً

The photometric sky quality of Mt. Shatdzhatmaz, the site of Sternberg Astronomical Institute Caucasian Observatory 2.5 m telescope, is characterized here by the statistics of the night-time sky brightness and extinction. The data were obtained as a by-product of atmospheric optical turbulence measurements with the MASS (Multi-Aperture Scintillation Sensor) device conducted in 2007--2013. The factors biasing night-sky brightness measurements are considered and a technique to reduce their impact on the statistics is proposed. The single-band photometric estimations provided by MASS are easy to transform to the standard photometric bands. The median moonless night-sky brightness is 22.1, 21.1, 20.3, and 19.0 mag per square arcsec for the $B$, $V$, $R$, and $I$ spectral bands, respectively. The median extinction coefficients for the same photometric bands are 0.28, 0.17, 0.13, and 0.09 mag. The best atmospheric transparency is observed in winter.
158 - I. Plauchu-Frayn 2016
We present optical UBVRI zenith night sky brightness measurements collected on eighteen nights during 2013--2016 and SQM measurements obtained daily over twenty months during 2014--2016 at the Observatorio Astronomico Nacional on the Sierra San Pedro Martir (OAN-SPM) in Mexico. The UBVRI data is based upon CCD images obtained with the 0.84m and 2.12m telescopes, while the SQM data is obtained with a high-sensitivity, low-cost photometer. The typical moonless night sky brightness at zenith averaged over the whole period is U = 22.68, B = 23.10, V = 21.84, R = 21.04, I = 19.36, and SQM = 21.88 mag/square arcsec, once corrected for zodiacal light. We find no seasonal variation of the night sky brightness measured with the SQM. The typical night sky brightness values found at OAN-SPM are similar to those reported for other astronomical dark sites at a similar phase of the solar cycle. We find a trend of decreasing night sky brightness with decreasing solar activity during period of the observations. This trend implies that the sky has become darker by delta_U =0.7, delta_B =0.5, delta_V =0.3, delta_R =0.5 mag/square arcsec since early 2014 due to the present solar cycle.
This paper presents optical night sky brightness measurements from the stratosphere using CCD images taken with the Super-pressure Balloon-borne Imaging Telescope (SuperBIT). The data used for estimating the backgrounds were obtained during three com missioning flights in 2016, 2018, and 2019 at altitudes ranging from 28 km to 34 km above sea level. For a valid comparison of the brightness measurements from the stratosphere with measurements from mountain-top ground-based observatories (taken at zenith on the darkest moonless night at high Galactic and high ecliptic latitudes), the stratospheric brightness levels were zodiacal light and diffuse Galactic light subtracted, and the airglow brightness was projected to zenith. The stratospheric brightness was measured around 5.5 hours, 3 hours, and 2 hours before the local sunrise time in 2016, 2018, and 2019 respectively. The $B$, $V$, $R$, and $I$ brightness levels in 2016 were 2.7, 1.0, 1.1, and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $B$, $V$, and $R$ brightness levels in 2018 were 1.3, 1.0, and 1.3 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The $U$ and $I$ brightness levels in 2019 were 0.1 mag arcsec$^{-2}$ brighter than the darkest ground-based measurements, whereas the $B$ and $V$ brightness levels were 0.8 and 0.6 mag arcsec$^{-2}$ darker than the darkest ground-based measurements. The lower sky brightness levels, stable photometry, and lower atmospheric absorption make stratospheric observations from a balloon-borne platform a unique tool for astronomy. We plan to continue this work in a future mid-latitude long duration balloon flight with SuperBIT.
In 2018, Solar Cycle 24 entered into a solar minimum phase. During this period, 11 million zenithal night sky brightness (NSB) data were collected at different dark sites around the planet, including astronomical observatories and natural protected a reas, with identical broadband Telescope Encoder and Sky Sensor photometers (based on the Unihedron Sky Quality Meter TSL237 sensor). A detailed observational review of the multiple effects that contribute to the NSB measurement has been conducted with optimal filters designed to avoid brightening effects by the Sun, the Moon, clouds, and other astronomical sources (the Galaxy and zodiacal light). The natural NSB has been calculated from the percentiles for 44 different photometers by applying these new filters. The pristine night sky was measured to change with an amplitude of 0.1 mag/arcsec$^2$ in all the photometers, which is suggested to be due to NSB variations on scales of up to months and to be compatible with semiannual oscillations. We report the systematic observation of short-time variations in NSB on the vast majority of the nights and find these to be related to airglow events forming above the mesosphere.
Sky conditions in the remote, dry north-western interior of South Africa are now the subject of considerable interest in view of the imminent construction of numerous solar power plants in this area. Furthermore, the part of this region in which the core of the SKA is to be located (which includes SALT) has been declared an Astronomical Advantage Zone, for which sky brightness monitoring will now be mandatory. In this project we seek to characterise the sky brightness profile under a variety of atmospheric conditions. Key factors are of course the lunar phase and altitude, but in addition the sky brightness is also significantly affected by the atmospheric aerosol loading, as that influences light beam scattering. In this paper we chose to investigate the sky characteristics soon after the Mount Pinatubo volcanic eruption in 1991, which resulted in huge ash masses reaching the stratosphere (where they affected solar irradiance for several years). We re-reduced photometric sky measurements from the South African Astronomical Observatory archives (and originally obtained by us) in different wavelengths and in a variety of directions. We use this data explore relationships between the aerosol loading and the sky brightness in a range of conditions, including several post-Pinatubo phases and during the passage of biomass burning induced haze and dust clouds. We use this data to explore the impact of our findings on the applicability of light scattering models and light scatterer properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا