ﻻ يوجد ملخص باللغة العربية
The excess of events in the diphoton final state near 750 GeV observed by ATLAS and CMS can be explained within the NMSSM near the R-symmetry limit. Both scalars beyond the Standard Model Higgs boson have masses near 750 GeV, mix strongly, and share sizeable production cross sections in association with b-quarks as well as branching fractions into a pair of very light pseudoscalars. Pseudoscalars with a mass of ~ 210 MeV decay into collimated diphotons, whereas pseudoscalars with a mass of ~ 500-550 MeV can decay either into collimated diphotons or into three pi^0 resulting in collimated photon jets. Various such scenarios are discussed; the dominant constraints on the latter scenario originate from bounds on radiative Upsilon decays, but they allow for a signal cross section up to 6.7 fb times the acceptance for collimated multiphotons to pass as a single photon.
We explore the detection possibility of light pseudoscalar Higgs boson in the next-to-minimal supersymmetric Standard Model(NMSSM) at the LHC with the center of mass energy, $sqrt{S}=13$ TeV. We focus on the parameter space which provides one of the
We propose an NMSSM scenario that can explain the excess in the diphoton spectrum at 750 GeV recently observed by ATLAS and CMS. We show that in a certain limit with a very light pseudoscalar one can reproduce the experimental results without invokin
One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and p
Natural Next-to-Minimal Supersymmetric Standard Model (nNMSSM) is featured by predicting one CP-even Higgs boson satisfying $m_{h_1} lesssim 120 ,{rm GeV}$ and Higgsinos lighter than about 300 GeV, and consequently the cross section for DM-nucleon sc
We study kinematic distributions that may help characterise the recently observed excess in diphoton events at 750 GeV at the LHC Run 2. Several scenarios are considered, including spin-0 and spin-2 750 GeV resonances that decay directly into photon