ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous Safe Screening of Features and Samples in Doubly Sparse Modeling

65   0   0.0 ( 0 )
 نشر من قبل Ichiro Takeuchi Prof.
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of learning a sparse model is conceptually interpreted as the process of identifying active features/samples and then optimizing the model over them. Recently introduced safe screening allows us to identify a part of non-active features/samples. So far, safe screening has been individually studied either for feature screening or for sample screening. In this paper, we introduce a new approach for safely screening features and samples simultaneously by alternatively iterating feature and sample screening steps. A significant advantage of considering them simultaneously rather than individually is that they have a synergy effect in the sense that the results of the previous safe feature screening can be exploited for improving the next safe sample screening performances, and vice-versa. We first theoretically investigate the synergy effect, and then illustrate the practical advantage through intensive numerical experiments for problems with large numbers of features and samples.



قيم البحث

اقرأ أيضاً

In this paper, we consider linear prediction models in the form of a sparse linear combination of rules, where a rule is an indicator function defined over a hyperrectangle in the input space. Since the number of all possible rules generated from the training dataset becomes extremely large, it has been difficult to consider all of them when fitting a sparse model. In this paper, we propose Safe Optimal Rule Fit (SORF) as an approach to resolve this problem, which is formulated as a convex optimization problem with sparse regularization. The proposed SORF method utilizes the fact that the set of all possible rules can be represented as a tree. By extending a recently popularized convex optimization technique called safe screening, we develop a novel method for pruning the tree such that pruned nodes are guaranteed to be irrelevant to the prediction model. This approach allows us to efficiently learn a prediction model constructed from an exponentially large number of all possible rules. We demonstrate the usefulness of the proposed method by numerical experiments using several benchmark datasets.
Sparse classifiers such as the support vector machines (SVM) are efficient in test-phases because the classifier is characterized only by a subset of the samples called support vectors (SVs), and the rest of the samples (non SVs) have no influence on the classification result. However, the advantage of the sparsity has not been fully exploited in training phases because it is generally difficult to know which sample turns out to be SV beforehand. In this paper, we introduce a new approach called safe sample screening that enables us to identify a subset of the non-SVs and screen them out prior to the training phase. Our approach is different from existing heuristic approaches in the sense that the screened samples are guaranteed to be non-SVs at the optimal solution. We investigate the advantage of the safe sample screening approach through intensive numerical experiments, and demonstrate that it can substantially decrease the computational cost of the state-of-the-art SVM solvers such as LIBSVM. In the current big data era, we believe that safe sample screening would be of great practical importance since the data size can be reduced without sacrificing the optimality of the final solution.
67 - Yufeng Zheng , Zeyu Zheng 2020
We propose a new framework named DS-WGAN that integrates the doubly stochastic (DS) structure and the Wasserstein generative adversarial networks (WGAN) to model, estimate, and simulate a wide class of arrival processes with general non-stationary an d random arrival rates. Regarding statistical properties, we prove consistency and convergence rate for the estimator solved by the DS-WGAN framework under a non-parametric smoothness condition. Regarding computational efficiency and tractability, we address a challenge in gradient evaluation and model estimation, arised from the discontinuity in the simulator. We then show that the DS-WGAN framework can conveniently facilitate what-if simulation and predictive simulation for future scenarios that are different from the history. Numerical experiments with synthetic and real data sets are implemented to demonstrate the performance of DS-WGAN. The performance is measured from both a statistical perspective and an operational performance evaluation perspective. Numerical experiments suggest that, in terms of performance, the successful model estimation for DS-WGAN only requires a moderate size of representative data, which can be appealing in many contexts of operational management.
Classical signal recovery based on $ell_1$ minimization solves the least squares problem with all available measurements via sparsity-promoting regularization. In practice, it is often the case that not all measurements are available or required for recovery. Measurements might be corrupted/missing or they arrive sequentially in streaming fashion. In this paper, we propose a global sparse recovery strategy based on subsets of measurements, named JOBS, in which multiple measurements vectors are generated from the original pool of measurements via bootstrapping, and then a joint-sparse constraint is enforced to ensure support consistency among multiple predictors. The final estimate is obtained by averaging over the $K$ predictors. The performance limits associated with different choices of number of bootstrap samples $L$ and number of estimates $K$ is analyzed theoretically. Simulation results validate some of the theoretical analysis, and show that the proposed method yields state-of-the-art recovery performance, outperforming $ell_1$ minimization and a few other existing bootstrap-based techniques in the challenging case of low levels of measurements and is preferable over other bagging-based methods in the streaming setting since it performs better with small $K$ and $L$ for data-sets with large sizes.
We consider the problem of estimating a ranking on a set of items from noisy pairwise comparisons given item features. We address the fact that pairwise comparison data often reflects irrational choice, e.g. intransitivity. Our key observation is tha t two items compared in isolation from other items may be compared based on only a salient subset of features. Formalizing this framework, we propose the salient feature preference model and prove a finite sample complexity result for learning the parameters of our model and the underlying ranking with maximum likelihood estimation. We also provide empirical results that support our theoretical bounds and illustrate how our model explains systematic intransitivity. Finally we demonstrate strong performance of maximum likelihood estimation of our model on both synthetic data and two real data sets: the UT Zappos50K data set and comparison data about the compactness of legislative districts in the US.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا