ﻻ يوجد ملخص باللغة العربية
We compute equations for real multiplication on the divisor classes of genus two curves via algebraic correspondences. We do so by implementing van Wamelens method for computing equations for endomorphisms of Jacobians on examples drawn from the algebraic models for Hilbert modular surfaces computed by Elkies and Kumar. We also compute a correspondence over the universal family for the Hilbert modular surface of discriminant 5 and use our equations to prove a conjecture of A. Wright on dynamics over the moduli space of Riemann surfaces.
We prove that the generic point of a Hilbert modular four-fold is not a Jacobian. The proof uses degeneration techniques and is independent of properties of the mapping class group used in preceding papers on locally symmetric subvarieties of the mod
Let $X$ be a quasi-projective variety and $fcolon Xto X$ a finite surjective endomorphism. We consider Zariski Dense Orbit Conjecture (ZDO), and Adelic Zariski Dense Orbit Conjecture (AZO). We consider also Kawaguchi-Silverman Conjecture (KSC) assert
We consider the potential density of rational points on an algebraic variety defined over a number field $K$, i.e., the property that the set of rational points of $X$ becomes Zariski dense after a finite field extension of $K$. For a non-uniruled pr
A portrait is a combinatorial model for a discrete dynamical system on a finite set. We study the geometry of portrait moduli spaces, whose points correspond to equivalence classes of point configurations on the affine line for which there exist poly
We prove the Lefschetz hyperplane section theorem using a simpler machinery by making the observation that we can compose the Lefschetz Pencil with a Real Morse function to get a map from the variety to $mathbb{R}$ which is close to being a Real Mors