ﻻ يوجد ملخص باللغة العربية
Empirical evidence for the involvement of nonradial pulsations (NRPs) in the mass loss from Be stars ranges from (i) a singular case (object{$mu$ Cen}) of repetitive mass ejections triggered by multi-mode beating to (ii) several photometric reports about enormous numbers of pulsation modes popping up during outbursts and on to (iii) effective single-mode pulsators. The BRITE Constellation of nanosatellites was used to obtain mmag photometry of the Be stars $eta$ and object{$mu$ Cen}. In the low-inclination star object{$mu$ Cen}, light pollution by variable amounts of near-stellar matter prevented any new insights into the variability and other properties of the central star. In the equator-on star object{$eta$ Cen}, BRITE photometry and {sc Heros} echelle spectroscopy from the 1990s reveal an intricate clockwork of star-disk interactions. The mass transfer is modulated with the frequency difference of two NRP modes and an amplitude three times as large as the amplitude sum of the two NRP modes. This process feeds a high-amplitude circumstellar activity running with the incoherent and slightly lower so-called v{S}tefl frequency. The mass loss-modulation cycles are tightly coupled to variations in the value of the v{S}tefl frequency and in its amplitude, albeit with strongly drifting phase differences. The observations are well described by the decomposition of the mass loss into a pulsation-related engine in the star and a viscosity-dominated engine in the circumstellar disk. Arguments are developed that large-scale gas-circulation flows occur at the interface. The propagation rates of these eddies manifest themselves as v{S}tefl frequencies. Bursts in power spectra during mass-loss events can be understood as the noise inherent to these gas flows.
The BRITE Constellation of nanosatellites obtained mmag photometry of 28 Cygni for 11 months in 2014-2016. Observations with the Solar Mass Ejection Imager in 2003-2010 and 118 H$alpha$ line profiles were added. For decades, 28 Cyg has exhibited fo
Context. Be stars are physically complex systems that continue to challenge theory to understand their rapid rotation, complex variability and decretion disks. $gamma$ Cassiopeiae ($gamma$ Cas) is one such star but is even more curious because of its
In photometry of $gamma$ Cas (B0.5 IVe) from the SMEI and BRITE-Constellation satellites, indications of low-order non-radial pulsation have recently been found, which would establish an important commonality with the class of classical Be stars at l
In early-type Be stars, groups of nonradial pulsation (NRP) modes with numerically related frequencies may be instrumental for the release of excess angular momentum through mass-ejection events. Difference and sum/harmonic frequencies often form add
(Abridged) Classical Be stars occasionally transition from having a gaseous circumstellar disk (Be phase) to a state in which all observational evidence for the presence of these disks disappears (normal B-star phase). We present one of the most comp