ﻻ يوجد ملخص باللغة العربية
We investigate the breathing of optical spatial solitons in highly nonlocal media. Generalizing the Ehrenfest theorem, we demonstrate that oscillations in beam width obey a fourth-order ordinary differential equation. Moreover, in actual highly nonlocal materials, the original accessible soliton model by Snyder and Mitchell [Science textbf{276}, 1538 (1997)] cannot accurately describe the dynamics of self-confined beams as the transverse size oscillations have a period which not only depends on power but also on the initial width. Modeling the nonlinear response by a Poisson equation driven by the beam intensity we verify the theoretical results against numerical simulations.
Ring dark and anti-dark solitons in nonlocal media are found. These structures have, respectively, the form of annular dips or humps on top of a stable continuous-wave background, and exist in a weak or strong nonlocality regime, defined by the sign
The problem of the stability of solitons in second-harmonic-generating media with normal group-velocity dispersion (GVD) in the second-harmonic (SH) field, which is generic to available chi^(2) materials, is revisited. Using an iterative numerical sc
The well-known (1+1D) nonlinear Schrodinger equation (NSE) governs the propagation of narrow-band pulses in optical fibers and others one-dimensional structures. For exploration the evolution of broad-band optical pulses (femtosecond and attosecond)
Near-soliton scanning light-beam propagation in media with both delayed-response Kerr-type and thermal nonlinearities is analyzed. The delayed-response part of the Kerr nonlinearity is shown to be competitive as compared to the thermal nonlinearity,
We report results of a systematic analysis of spatial solitons in the model of 1D photonic crystals, built as a periodic lattice of waveguiding channels, of width D, separated by empty channels of width L-D. The system is characterized by its structu