We present a promising method for creating high-density ensembles of nitrogen-vacancy centers with narrow spin-resonances for high-sensitivity magnetic imaging. Practically, narrow spin-resonance linewidths substantially reduce the optical and RF power requirements for ensemble-based sensing. The method combines isotope purified diamond growth, in situ nitrogen doping, and helium ion implantation to realize a 100 nm-thick sensing surface. The obtained 10^(17) cm^(-3) nitrogen-vacancy density is only a factor of 10 less than the highest densities reported to date, with an observed spin resonance linewidth over 10 times more narrow. The 200 kHz linewidth is most likely limited by dipolar broadening indicating even further reduction of the linewidth is desirable and possible.