ترغب بنشر مسار تعليمي؟ اضغط هنا

Network nestedness as generalized core-periphery structures

94   0   0.0 ( 0 )
 نشر من قبل Sang Hoon Lee
 تاريخ النشر 2016
والبحث باللغة English
 تأليف Sang Hoon Lee




اسأل ChatGPT حول البحث

The concept of nestedness, in particular for ecological and economical networks, has been introduced as a structural characteristic of real interacting systems. We suggest that the nestedness is in fact another way to express a mesoscale network property called the core-periphery structure. With real ecological mutualistic networks and synthetic model networks, we reveal the strong correlation between the nestedness and core-periphery-ness (likeness to the core-periphery structure), by defining the network-level measures for nestedness and core-periphery-ness in the case of weighted and bipartite networks. However, at the same time, via more sophisticated null-model analysis, we also discover that the degree (the number of connected neighbors of a node) distribution poses quite severe restrictions on the possible nestedness and core-periphery parameter space. Therefore, there must exist structurally interwoven properties in more fundamental levels of network formation, behind this seemingly obvious relation between nestedness and core-periphery structures.



قيم البحث

اقرأ أيضاً

As new instances of nested organization --beyond ecological networks-- are discovered, scholars are debating around the co-existence of two apparently incompatible macroscale architectures: nestedness and modularity. The discussion is far from being solved, mainly for two reasons. First, nestedness and modularity appear to emerge from two contradictory dynamics, cooperation and competition. Second, existing methods to assess the presence of nestedness and modularity are flawed when it comes to the evaluation of concurrently nested and modular structures. In this work, we tackle the latter problem, presenting the concept of textit{in-block nestedness}, a structural property determining to what extent a network is composed of blocks whose internal connectivity exhibits nestedness. We then put forward a set of optimization methods that allow us to identify such organization successfully, both in synthetic and in a large number of real networks. These findings challenge our understanding of the topology of ecological and social systems, calling for new models to explain how such patterns emerge.
A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti-Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the nodes degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the nodes degree. We illustrate our algorithm using various empirical networks.
With a core-periphery structure of networks, core nodes are densely interconnected, peripheral nodes are connected to core nodes to different extents, and peripheral nodes are sparsely interconnected. Core-periphery structure composed of a single cor e and periphery has been identified for various networks. However, analogous to the observation that many empirical networks are composed of densely interconnected groups of nodes, i.e., communities, a network may be better regarded as a collection of multiple cores and peripheries. We propose a scalable algorithm to detect multiple non-overlapping groups of core-periphery structure in a network. We illustrate our algorithm using synthesised and empirical networks. For example, we find distinct core-periphery pairs with different political leanings in a network of political blogs and separation between international and domestic subnetworks of airports in some single countries in a world-wide airport network.
We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in the bipartite network. Cores of communities are highly informative and robust with respect to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores by investigating an artificial benchmark network, the co-authorship network, and the actor-movie network. The accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of the adjusted Rand index and of the adjusted Wallace index respectively. The detection of cores is highly precise although the accuracy of the methodology can be limited in some cases.
Originally a speculative pattern in ecological networks, the hybrid or compound nested-modular pattern has been confirmed, during the last decade, as a relevant structural arrangement that emerges in a variety of contexts --in ecological mutualistic system and beyond. This implies shifting the focus from the measurement of nestedness as a global property (macro level), to the detection of blocks (meso level) that internally exhibit a high degree of nestedness. Unfortunately, the availability and understanding of the methods to properly detect in-block nested partitions lie behind the empirical findings: while a precise quality function of in-block nestedness has been proposed, we lack an understanding of its possible inherent constraints. Specifically, while it is well known that Newman-Girvans modularity, and related quality functions, notoriously suffer from a resolution limit that impairs their ability to detect small blocks, the potential existence of resolution limits for in-block nestedness is unexplored. Here, we provide empirical, numerical and analytical evidence that the in-block nestedness function lacks a resolution limit, and thus our capacity to detect correct partitions in networks via its maximization depends solely on the accuracy of the optimization algorithms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا