ﻻ يوجد ملخص باللغة العربية
Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum processors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme this is impossible because both, up- and downconverted, sidebands are necessarily present. Here we demonstrate true single sideband up- or downconversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a three orders of magnitude improvement of the electro-optical conversion efficiency reaching 0.1% photon number conversion for a 10GHz microwave tone at 0.42mW of optical pump power. The presented scheme is fully compatible with existing superconducting 3D circuit quantum electrodynamics technology and can be used for non-classical state conversion and communication. Our conversion bandwidth is larger than 1MHz and not fundamentally limited.
We demonstrate that yttrium iron garnet microspheres support optical whispering gallery modes similar to those in non-magnetic dielectric materials. The direction of the ferromagnetic moment tunes both the resonant frequency via the Voigt effect as w
Whispering gallery modes (WGMs), circulating modes near the surface of a spheroidal material, have been known to exhibit high quality factors for both acoustic and electromagnetic waves. Here, we report an electro-optomechanical system, where the ove
The inherent coupling of optical and mechanical modes in high finesse optical microresonators provide a natural, highly sensitive transduction mechanism for micromechanical vibrations. Using homodyne and polarization spectroscopy techniques, we achie
The microwave properties of a crystalline sapphire dielectric whispering gallery mode resonator have been measured at very low excitation strength (E/hf=1) and low temperatures (T = 30 mK). The measurements were sensitive enough to observe saturation
We demonstrate microwave-to-optical conversion using six-wave mixing in $^{87}$Rb atoms where the microwave field couples to two atomic Rydberg states, and propagates collinearly with the converted optical field. We achieve a photon conversion effici