Light-Front Holography, Color Confinement, and Supersymmetric Features of QCD


الملخص بالإنكليزية

Light-Front Quantization provides a physical, frame-independent formalism for hadron dynamics and structure. Observables such as structure functions, transverse momentum distributions, and distribution amplitudes are defined from the hadronic light-front wavefunctions. One obtains new insights into the hadronic spectrum, light-front wavefunctions, and the functional form of the QCD running coupling in the nonperturbative domain using light-front holography -- the duality between the front form and AdS$_5$, the space of isometries of the conformal group. In addition, superconformal algebra leads to remarkable supersymmetric relations between mesons and baryons of the same parity. The mass scale $kappa$ underlying confinement and hadron masses can be connected to the parameter $Lambda_{overline {MS}}$ in the QCD running coupling by matching the nonperturbative dynamics, as described by the effective conformal theory mapped to the light-front and its embedding in AdS space, to the perturbative QCD regime. The result is an effective coupling defined at all momenta. This matching of the high and low momentum transfer regimes determines a scale $Q_0$ which sets the interface between perturbative and nonperturbative hadron dynamics. The use of $Q_0$ to resolve the factorization scale uncertainty for structure functions and distribution amplitudes, in combination with the principle of maximal conformality (PMC) for setting the renormalization scales, can greatly improve the precision of perturbative QCD predictions for collider phenomenology. The absence of vacuum excitations of the front-form vacuum has important consequences for the cosmological constant. I also discuss evidence that the antishadowing of nuclear structure functions is flavor dependent, and why shadowing and antishadowing phenomena may be incompatible with sum rules for nuclear parton distribution functions.

تحميل البحث