ﻻ يوجد ملخص باللغة العربية
The angle $psi$ between a planets orbital axis and the spin axis of its parent star is an important diagnostic of planet formation, migration, and tidal evolution. We seek empirical constraints on $psi$ by measuring the stellar inclination $i_{rm s}$ via asteroseismology for an ensemble of 25 solar-type hosts observed with NASAs Kepler satellite. Our results for $i_{rm s}$ are consistent with alignment at the 2-$sigma$ level for all stars in the sample, meaning that the system surrounding the red-giant star Kepler-56 remains as the only unambiguous misaligned multiple-planet system detected to date. The availability of a measurement of the projected spin-orbit angle $lambda$ for two of the systems allows us to estimate $psi$. We find that the orbit of the hot-Jupiter HAT-P-7b is likely to be retrograde ($psi=116.4^{+30.2}_{-14.7}:{rm deg}$), whereas that of Kepler-25c seems to be well aligned with the stellar spin axis ($psi=12.6^{+6.7}_{-11.0}:{rm deg}$). While the latter result is in apparent contradiction with a statement made previously in the literature that the multi-transiting system Kepler-25 is misaligned, we show that the results are consistent, given the large associated uncertainties. Finally, we perform a hierarchical Bayesian analysis based on the asteroseismic sample in order to recover the underlying distribution of $psi$. The ensemble analysis suggests that the directions of the stellar spin and planetary orbital axes are correlated, as conveyed by a tendency of the host stars to display large inclination values.
Obliquity measurements for stars hosting relatively long-period giant planets with weak star-planet tidal interactions may play a key role in distinguishing between formation theories for shorter-period hot Jupiters. Few such obliquity measurements h
In an effort to measure the Rossiter-McLaughlin effect for the TRAPPIST-1 system, we performed high-resolution spectroscopy during transits of planets e, f, and b. The spectra were obtained with the InfraRed Doppler spectrograph on the Subaru 8.2-m t
We present an observation of the Rossiter-McLaughlin effect for the planetary system WASP-3. Radial velocity measurements were made during transit using the SOPHIE spectrograph at the 1.93m telescope at Haute-Provence Observatory. The shape of the ef
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-ali
We report measurements of the sky-projected spin-orbit angle for AU,Mic,b, a Neptune-size planet orbiting a very young ($sim20$,Myr) nearby pre-main sequence M dwarf star which also hosts a bright, edge-on, debris disk. The planet was recently discov