ترغب بنشر مسار تعليمي؟ اضغط هنا

Edge mode dynamics of quenched topological wires

130   0   0.0 ( 0 )
 نشر من قبل Pedro Sacramento
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P.D. Sacramento




اسأل ChatGPT حول البحث

The fermionic and Majorana edge mode dynamics of various topological systems is compared, after a sudden global quench of the Hamiltonian parameters takes place. Attention is focused on the regimes where the survival probability of an edge state has oscillations either due to critical or off-critical quenches. The nature of the wave functions and the overlaps between the eigenstates of different points in parameter space determine the various types of behaviors, and the distinction due to the Majorana nature of the excitations plays a lesser role. Performing a sequence of quenches it is shown that the edge states, including Majorana modes, may be switched off and on. Also, the generation of Majoranas due to quenching from a trivial phase is discussed.



قيم البحث

اقرأ أيضاً

80 - P.D. Sacramento 2017
A characteristic feature of topological systems is the presence of robust gapless edge states. In this work the effect of time-dependent perturbations on the edge states is considered. Specifically we consider perturbations that can be understood as changes of the parameters of the Hamiltonian. These changes may be sudden or carried out at a fixed rate. In general, the edge modes decay in the thermodynamic limit, but for finite systems a revival time is found that scales with the system size. The dynamics of fermionic edge modes and Majorana modes are compared. The effect of periodic perturbations is also referred allowing the appearance of edge modes out of a topologically trivial phase.
We study a one-dimensional wire with strong Rashba and Dresselhaus spin-orbit coupling (SOC), which supports Majorana fermions when subject to a Zeeman magnetic field and in proximity of a superconductor. Using both analytical and numerical technique s we calculate the electronic spin texture of the Majorana end states. We find that the spin polarization of these states depends on the relative magnitude of the Rashba and Dresselhaus SOC components. Moreover, we define and calculate a local Majorana polarization and Majorana density and argue that they can be used as order parameters to characterize the topological transition between the trivial system and the system exhibiting Majorana bound modes. We find that the local Majorana polarization is correlated to the transverse spin polarization, and we propose to test the presence of Majorana fermions in a 1D system by a spin-polarized density of states measurement.
85 - B. Pekerten , A. Teker , O. Bozat 2015
In this work, we investigate the effect of disorder on the topological properties of multichannel superconductor nanowires. While the standard expectation is that the spectral gap is closed and opened at transitions that change the topological index of the wire, we show that the closing and opening of a transport gap can also cause topological transitions, even in the presence of nonzero density of states across the transition. Such transport gaps induced by disorder can change the topological index, driving a topologically trivial wire into a nontrivial state or vice versa. We focus on the Rashba spin-orbit coupled semiconductor nanowires in proximity to a conventional superconductor, which is an experimentally relevant system, and obtain analytical formulas for topological transitions in these wires, valid for generic realizations of disorder. Full tight-binding simulations show excellent agreement with our analytical results without any fitting parameters.
Josephson weak links made of two-dimensional topological insulators (TIs) exhibit magnetic oscillations of the supercurrent that are reminiscent of those in superconducting quantum interference devices (SQUIDs). We propose a microscopic theory of thi s effect that goes beyond the approaches based on the standard SQUID theory. For long junctions we find a temperature-driven crossover from Phi_0-periodic SQUID-like oscillations to a 2 Phi_0-quasiperiodic interference pattern with different peaks at even and odd values of the magnetic flux quantum Phi_0=ch/2e. This behavior is absent in short junctions where the main interference signal occurs at zero magnetic field. Both types of interference patterns reveal gapless (protected) Andreev bound states. We show, however, that the usual sawtooth current-flux relationship is profoundly modified by a Doppler-like effect of the shielding current which has been overlooked previously. Our findings may explain recently observed even-odd interference patterns in InAs/GaSb-based TI Josephson junctions and uncover unexplored operation regimes of nano-SQUIDs.
We study theoretically a chain of precessing classical magnetic impurities in an $s$-wave superconductor. Utilizing a rotating wave description, we derive an effective Hamiltonian that describes the emergent Shiba band. We find that this Hamiltonian shows non-trivial topological properties, and we obtain the corresponding topological phase diagrams both numerically and analytically. We show that changing the precession frequency offers a control over topological phase transitions and the emergence of Majorana bound states. We propose driving the magnetic impurities or magnetic texture into precession by means of spin-transfer torque in a spin-Hall setup, and manipulate it using spin superfluidity in the case of planar magnetic order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا